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ABSTRACT

This paper reviews proposals for extensions to VHDL to support high-level modeling and places them

within a taxonomy that describes the modeling requirements they address. Many of the proposals focus

on object-oriented extensions, whereas this paper argues that extension of VHDL to support high-level

modeling requires a broader review. The paper presents a detailed discussion of issues to be considered

in adding high-level modeling extensions to VHDL, including concurrency and communication, abstrac-

tion using entity interfaces, object-oriented data modeling, encapsulation, signal assignment semantics,

shared variables, multiple inheritance, genericity and synthesis. Emphasis is placed on the importance

of designing simple orthogonal semantic mechanisms that interact in well defined ways, and that inte-

grate cleanly with exisiting language features.

Keywords: high-level modeling, VHDL, object-orientation, genericity, concurrency, communication.

1. INTRODUCTION

In recent years, as the complexity of hardware systems has increased, designers have been forced to in-

clude high-level modeling as a stage in the design flow. Specifying and simulating systems at a high level

of abstraction allows more reliable capture of requirements and more extensive exploration of the design
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space. High-level modeling and related activities have the potential to reduce development time and cost.

However, in order to support high-level modeling, a design language must allow specification of data and

behavior in an abstract manner [41]. It should not force the designer to make design decisions that are

better deferred to later in the design flow. For example, it should not force the designer to choose between

a hardware and a software implementation too early, or to specify a detailed communications protocol

before partitioning the design.

Ideally, a design language should allow the designer to span the spectrum of abstraction from high-level

down to implementation (invoking compilers or synthesis tools to realize the final implementation). It

is desirable to a single design languages throughout the design flow, avoiding interface- and equivalence-

checking problems that otherwise arise. VHDL [28], as it currently stands, is a hardware description lan-

guage that is well-suited to modeling small- to medium-scale systems at levels of abstraction up to

register-transfer level. However, it has some serious shortcomings when used for modeling large-scale

systems or systems at a high level of abstraction. In order to remedy these shortcomings, complexity-

management and abstraction techniques that have been used successfully in programming languages

should be reviewed as candidates for extensions to VHDL.

An important development in the software engineering community is the movement towards object-ori-

entation as a means of managing the complexity inherent in large software systems. Object-orientation

allows a design space to be partitioned into manageable pieces with well-constrained interactions, and

facilitates the reuse and evolution of modules. According to Booch, “object orientation involves the ele-

ments of data abstraction, encapsulation, and inheritance with polymorphism” in a language [8, page

181]. The ideas denoted by these terms are clearly defined and illustrated by Booch [7] and have be re-

viewed extensively by other authors, so we do not include any detailed discussion here.

Given the success of object-oriented techniques in the software domain, it is appropriate to consider their

inclusion in a hardware description language such as VHDL. We expect that the use of object-oriented

techniques in hardware description languages will help designers manage complexity, improve their pro-

ductivity, and improve the reliability of the design process. However, object-oriented extensions should

not be viewed as a panacea. Object-orientation focusses mainly on abstraction over data and the related

operations, and does not address issues such as concurrency and communication. Successful extension

of VHDL to support high-level modeling requires a broader review of these and other issues.

Our aim in this paper is not to present or support any particular extension to VHDL. Instead, we review

previous proposals for extensions and attempt to categorize them to enable detailed analysis and discus-

sion. Our categorization is based on the semantics of each proposal, insofar as the semantics are elabo-
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rated in each proposal. We attempt to identify some pitfalls that can trap unwary players and show that

many of the previously proposed extensions encounter the pitfalls and violate principles of good language

design.

When considering extensions to a hardware description language, it is necessary to identify the require-

ments of the language users, and to ensure that proposed extensions meet these requirements. Bergé et

al [6] report on a survey of several European telecommunication companies and system houses to discov-

er their requirements of a design language. In particular, the respondents were asked to identify their cur-

rent problems using VHDL and their expectations for object-oriented VHDL. The responses reported

were:

S to target a higher level of abstraction for modeling,

S to simplify and speed up the process of specification,

S to ease the addition of new functionality,

S to improve the functional validation process,

S to improve the degree of reusability,

S to improve capability for documentation,

S to increase automation in the design flow,

S to improve consistency with object-oriented notations or languages used in hardware/software

codesign, and

S to improve ease of learning and application.

The proposals for extension to VHDL surveyed in this paper meet these requirements to varying degrees.

The remainder of this paper is organized as follows. Section 2 presents some general principles for lan-

guage design that we argue should be adhered to when developing proposals for language extension. Sec-

tion 3 presents a taxonomy of approaches to high-level modeling extensions to VHDL and places
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previously published proposals within the taxonomy. Section 4 discusses a range of issues that must be

considered when designing high-level modeling extensions to VHDL and discusses the way in which pre-

vious proposals address the issues (or, in some cases, fail to address them). Finally, Section 5 concludes

with a discussion of our plans to develop high-level modeling extensions to VHDL— hopefully avoiding

the pitfalls along the way.

2. LANGUAGE DESIGN PRINCIPLES

The design of a programming language or a hardware description language is a difficult task. Since the

language is the vehicle for expression of design intent, a good language can greatly help the design pro-

cess, whereas a poor language can significantly hinder it. A language should conform to a set of ideals

or philosophies to make it coherent, easy to learn, and easy to read and understand. This is what Brooks

refers to as “conceptual integrity” [9]. We present here some views on language design principles that

lead to high-quality languages. While many of these principles may appear to be common sense or gener-

al “motherhood and apple pie” statements, it is important to bear them in mind throughout the language

design process. They are all too often overlooked, particularly when language design is conducted by

a committee of diverse interests. As Brooks notes, “Conceptual integrity does require that a system reflect

a single philosophy and that the specification as seen by the user flow from a few minds” [9, page 49].

2.1 Design of Semantics

The foremost principle is that language design should focus on semantics first and syntax second. The

semantics of language features embody the meaning of the features, and determine what design intent

can be expressed in the language. The benefits of a semantics-based language design methodology are

illustrated by Tennent [46]. He comments that a methodological approach based on semantics is “in-

tended to help a designer cope with the detailed problems of achieving consistency, completenes, and

regularity in the design of specific language features,” and “has the effect of drawing [the designer’s]

attention to deeper structural issues” in a language. Syntax, on the other hand, is the concrete expression

of semantic features. While poor syntax may obfuscate the design intent, it does not prohibit expression

of the intent. Good syntax design allows the designer to think about and communicate design intent clear-

ly.

2.2 Simplicity of Mechanism

In determining semantic features to be included in a language, sufficient simple semantic mechanisms

should be preferred over more complicated general solutions; the simple mechanisms can then be used

to build application-specific solutions. The semantic mechanisms should, as much as possible, be ortho-
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gonal to each other. As Hoare suggests [26], “concentrate on one feature at a time,” and “reject any that

are mutually inconsistent.” By choosing simple orthogonal semantic mechanisms, interaction between

mechanisms is reduced and easier to understand. Simplicity of mechanism and reduced interaction make

it easier for tool builders to optimize their implementation of language features.

2.3 Design of Extensions

When extending an existing language, the preceding principles should be applied to the extensions. Sim-

ple semantic mechanisms should be chosen to augment the existing mechanisms, not to replace them.

The new features should conform to the same design philosophies that were followed in the original lan-

guage design so as to maintain architectural coherence. Careful consideration must be given to interac-

tions between new features and existing features. While the semantics of new features are of primary

concern, integration of new syntax is also important. Extensions should aim for stylistic consistency with

the existing language. New features that are just syntactic rewrites of existing features (“syntactic sugar”)

should only be included if they significantly enhance the expressiveness of the language. As Wirth puts

it [49], “distinguish . . . between what is essential and what ephemeral.”

3. TAXONOMY OF PREVIOUSLY PROPOSED EXTENSIONS

Previous proposals for extending VHDL for high-level modeling have been couched in terms of object-

oriented extensions, and have focussed on three areas of language usage: data modeling, structural model-

ing, and concurrency and communication (sometimes referred to as “system-level modeling”). These

areas are also reviewed by Dunlop [16]. Table 1 summarizes the approaches adopted by each of the pre-

viously proposed extensions. We discuss the concepts in more detail in the following sections. Note that

the examples shown in this and subsequent sections are intended only to illustrate the concepts. No con-

crete language proposal is implied.
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Table 1. Summary of proposals for object-oriented extensions to VHDL.

Proposal Data Modeling Structural Modeling Concurrency and Com-
munication

Mills [36] Ada-95 approach (tagged
type with single inherit-
ance)

tagged entity/architecture
with multiple inheritance

Schumacher and Nebel
[42]

Ada-95 approach (tagged
type with single inherit-
ance)

Dunlop [17] illustrates general con-
cepts using Ada-95 ap-
proach

Willis et al [48] class-based with multiple
inheritance

implicit: class types for
shared variables have
monitor semantics

Objective VHDL: Ra-
detzki et al [39]

class-based with single
inheritance

entity classes with single
inheritance

Ecker [18] tagged entity/architecture
with multiple inheritance

Ramesh [40] entity classes with inher-
itance (only single inher-
itance illustrated)

Mills [37] inheritance via configura-
tion

Vista OO-VHDL: Swamy
et al [45]

entity classes with inher-
itance (only single inher-
itance illustrated)

entity classes with oper-
ations (modified monitor
semantics); inheritance
(only single inheritance
illustrated)

Benzakki and Djafri [5] entity classes with multi-
ple inheritance

entity classes with oper-
ations (modified monitor
semantics); multiple in-
heritance

Cabanis et al [11] class-based with oper-
ations (concurrent in-
vocation with ad hoc con-
currency control); multi-
ple inheritance

3.1 Extensions for Data Modeling

Object-oriented extensions for data modeling address the way in which data values are described in a

model. Currently, VHDL provides a type system similar to that of Ada, but with some simplifications.

Proposals for extending VHDL suggest that this simplified type system is insufficient for modeling data

with complex structure. They argue that object-oriented techniques for expressing data should be incor-

porated into VHDL to support modeling at a high level of abstraction. In particular, language features

to support inheritance and polymorphism should be added, since they are key features to support object-
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oriented programming. Two main approaches have been canvassed for object-oriented data modeling in

VHDL: programming by extension and class-based.

Programming by Extension The programming by extension approach involves adopting features of

Ada-95 [32], and is the basis of proposals by Mills [36], and Schumacher and Nebel [42]. Dunlop [17]

also illustrates the general concepts of object-oriented data modeling using this approach. It involves first-

ly defining a parent type as a tagged record, with primitive operations on the parent type defined as subpro-

grams that include a parameter of the parent type. For example, the following code defines a parent type

that represents a general CPU instruction and two operations on instructions:

type instruction is tagged record
opcode : opcode_type;

end record;

procedure check_opcode ( instr : in instruction; . . . );

procedure perform_op ( instr : in instruction );

Next, the parent type is refined by deriving a new type with additional record elements. While the derived

type inherits the primitive operations of the parent type, the operations can be replaced with alternative

implementations. In addition, new primitive operations may be defined for the derived type. For exam-

ple, a register-mode ALU instruction may be defined as a refinement of a general instruction, as follows:

type register_alu_instruction is new instruction
with record

dest, src1, src2 : reg_number;
end record;

procedure perform_op ( instr : in register_alu_instruction );

The operation check_opcode is inherited and can be applied to values of the derived type. The operation

perform_op is replaced with a new version that is specific to values of the derived type.

In the Ada-95 approach, the hierarchy of derived types forms the inheritance hierarchy required in object-

oriented programming. The term class is used to refer to the tree of types derived from a given parent

type. Polymorphic typing comes from declaration of objects of unconstrained class types, denoted using

the attribute ’class. For example:

procedure execute ( instr : in instruction’class; . . . );

The formal parameter of this procedure is polymorphic, and may take a value of type instruction or of any

type derived from instruction. Thus, within the procedure, the call
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perform_op ( instr );

requires a dynamic check of the tag associated with the actual parameter value to determine the type of

the actual parameter. The type of the actual parameter determines which procedure is called. This process

is called “dispatching” or “late binding,” as the type of the actual parameter is bound at run-time rather

than being statically determined.

Classes The class-based approach to object-oriented data modeling extensions in VHDL is influenced

by Java [21], C++ [44] and their predecessors (notably, Simula [13]). This approach is followed by

Willis et al [48], Objective VHDL [39], Vista OO-VHDL [45], Benzakki and Djafri [5], and Cabanis

et al [11]. The approach involves the definition of classes that encapsulate the definitions of data and

operations of objects. A class may inherit encapsulated data and operations from another class. The in-

heriting class is called a subclass and the parent is called the superclass. As an example, the instruction

type shown above might be defined as follows (using a VHDL-like style of expression, approximately

mirroring C++ semantics):

type instruction is class

opcode : opcode_type;

procedure check_opcode ( . . . );

procedure perform_op;

end class;

A value of this type contains an encapsulated opcode value that can be operated upon only by the proce-

dures defined in the class. These procedures are often called “methods” or “operations.” A subclass rep-

resenting register-mode ALU instructions might then be defined as:

type register_alu_instruction is instruction class

dest, src1, src2 : reg_number;

procedure perform_op;

end class;

The opcode value and the check_opcode operation are inherited from the superclass instruction, whereas

the perform_op operation is overridden by a new version in the subclass. Objects are created as instances

of these class types, and operations are invoked by naming a particular instance. For example:

variable instr_reg : instruction;
. . .

instr_reg.perform_op;

The encapsulated value for the instance of the class is implicitly available for use in the perform_op opera-

tion. The object denoted by instr_reg may be a member of the instruction class or one of its subclasses.
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Thus, the invocation of the perform_op operation may require dynamic dispatching depending on the par-

ticular class of the object.

While a number of proposals are based on this approach, only Willis et al [48] and Radetzki et al [39]

limit their discussion to its use for data modeling. Other proposals (cited later in this section) extend its

use to system-level modeling. The driving motivation for incorporating classes in a language definition

is to provide direct language support for the principles of object-orientation in a single language feature.

Hence, a class is a unit of abstraction, encapsulation, modularity, hierarchy (through inheritance) and typ-

ing in this approach.

3.2 Extensions for Structural Modeling

Object-oriented extensions for structural modeling address the issue of reuse of hardware designs to form

new designs. Design entities are viewed analogously to classes, with component instances being objects.

The generic constants and ports defined in a design entity are properties of objects. The proposed exten-

sions for structural modeling identified in Table 1 suggest that new design entities can be derived by inher-

iting generics and ports from a parent entity and adding new generics and ports. In addition, the process

statements and component instances from the parent architecture body are inherited, and new processes

and component instances are added to the derived architecture body.

There appear to be two approaches to object-oriented structural modeling, paralleling the two approaches

to data modeling. However, the differences, insofar as they are described in the proposals, are syntactic

rather than semantics-based. One approach, proposed by both Mills [36] and Ecker [18], involves using

the keyword “tagged” to identify an entity or architecture that can be inherited. The approach proposed

for Objective VHDL [39] is similar, but omits the keyword “tagged”and allows any entity to be inherited.

Although the finer details of syntax vary between the proposals, an illustrative example is:

entity counter is tagged
port ( clk, out_en : in bit; q : out std_logic_vector );

end entity counter;

architecture behavioral of counter is tagged
signal count : natural;

begin

increment : process ( clk ) is
begin

if clk’event and clk = ’1’then
count := (count + 1) mod 2**q’length;

end if;
end process increment;

drive :
q <= To_vector(count) when out_en = ’1’else

(others => ’Z’);

end architecture behavioral;
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Here, the ports clk and q are properties of the entity that can be inherited, and the statements increment

and drive are the properties of the architecture that can be inherited.

The proposals use the keyword “new”to specify inheritance into a derived entity or architecture. Ecker’s

proposal does not clearly indicate whether an inheriting architecture inherits from a parent architecture

of the parent entity, or from alternative architectures of the derived entity. Examples of both cases appear

in the proposal without comment on the distinction. The Mills’proposals and Objective VHDL, on the

other hand, clearly indicate that a derived architecture inherits from a nominated architecture of the parent

entity. For example (not using syntax of either proposal):

entity resettable_counter is new counter with
port ( reset : in bit );

end entity resettable_counter;

architecture resettable_behavioral of resettable_counter is new behavioral with
begin

increment : process ( clk, reset ) is
begin

. . .
end process increment;

end architecture resettable_behavioral;

The derived entity adds the port reset to those inherited from the parent entity. The derived architecture

inherits the internal signal count and the statement drive from the parent architecture, and overrides the

statement increment with a modified version.

The other approach to structural modeling, proposed by Ramesh [40], basically uses the keyword “class”

in place of “tagged” to indicate inheritance, but is otherwise the same. The underlying semantics are in-

heritance of generics and ports in the entity declarations and inheritance of concurrent statements in the

architecture bodies.

Mills [37] also proposes a semantically similar alternative, where inheritance is specified in the binding

indication of a configuration declaration or configuration specification, rather than in an entity or archi-

tecture declaration. The difficulty with this approach is that the binding is performed during elaboration

rather than during analysis. Hence, an inheriting design entity is unable to refer to ports, signals and other

items declared in a parent design entity. This lack of visibility significantly limits the way in which an

inheriting design entity can extend or refine the implemention of the parent. In order to avoid such limita-

tions, it might be possible to defer analysis of an inheriting design entity until elaboration time. However,

to do so would be significantly at variance with the existing philosophy of early, separate analysis and

error detection.
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3.3 Concurrency and Communication Extensions

Object-oriented extensions for system-level modeling address the fact that the communication model im-

plied by signals and ports in VHDL is inappropriate for abstract designs in which the inter-module com-

munication protocols are not yet defined. In the early design stages, a system can be modeled as a

collection of communicating concurrent processes that request operations of one another and transfer data

(often represented by abstract tokens) between one another. The detailed representation of data, the parti-

tioning into hardware or software modules, and the sequencing and timing of communication over con-

crete interconnections are design decisions deferred to a later stage in the design flow.

Proposed extensions to VHDL for system-level modeling are based on an object-oriented approach, and

seek to represent the system as a set of concurrent objects that communicate by invoking operations in

other objects. The intention is to use object-oriented techniques to improve the development process at

this early stage in the lifecycle. We identify two distinct approaches that have been proposed for extending

VHDL in this area. The first approach involves extending the notion of an entity, viewing it as a form

of class and adding operations that can be invoked by processes. For example (using no particular propos-

er’s syntax):

entity class elevator is
operation call ( floor : floor_number );
operation where_are_you return floor_number;

end entity class;

entity class elevator_with_fire_service is
new elevator with
operation set_emergency_mode;
operation clear_emergency_mode;

end entity class;

The first entity class defines operations to call an elevator to a specified floor and to query the location

of an elevator. The second entity class inherits these operations, and defines new operations to set and

clear and emergency operating mode. A model might instantiate elevator objects as follows:

object normal_elevator : elevator;
object emergency_elevator : elevator_with_fire_service;

A process within the model might invoke operations as follows:

emergency_elevator_location := emergency_elevator.where_are_you;
emergency_elevator.set_emergency_mode;
emergency_elevator.call ( ground_level );

The Vista OO-VHDL language described by Swamy et al [45], and the proposal by Benzakki and Djafri

[5] follow this approach. These proposals also address structural modeling, but motivate their extensions
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by system-level modeling needs. We discuss a number of problems with this approach and with the par-

ticular proposals in Sections 4.1 and 4.2.

The second approach to extensions for system-level modeling involves adding a class concept to the lan-

guage, as described above for data modeling, and addressing the issue of concurrency control for multiple

processes accessing an object. The proposal by Willis et al [48] implicitly addresses this issue by making

classes take on the characteristics of monitors when instantiated as shared objects. In such cases, mutual

exclusion is enforced for concurrent access to a shared object. The proposal by Cabanis et al [11], on

the other hand, permits concurrent access to a shared object. It addresses concurrency control by provid-

ing some predicates that the designer can use to determine whether concurrent access is occurring and

thus control program flow (for example, by busy-waiting). Objective VHDL [39] does not include ex-

plicit language extensions for concurrency. Rather, it suggests a way of using classes to encapsulate com-

munication protocols implemented using signals and ports. We discuss the use of object-oriented

techniques for system-level modeling further in Section 4.

4. ISSUES FOR HIGH-LEVEL MODELING EXTENSIONS TO VHDL

One of our guiding principles for language extension mentioned earlier concerns integration of new fea-

tures with existing features. Thus, if we are to consider new features for VHDL to support high-level

modeling, we need to identify existing features that relate to high-level modeling. With this in mind, we

can clearly see that VHDL already includes many features that relate to the principles cited by Booch as

necessary for object-orientation. Subprograms, entities, and packages support abstraction and encapsula-

tion (albeit weak encapsulation in the case of packages); and overloading provides a limited, ad-hoc form

of polymorphism. In the terminology of Wegner [47], these features are sufficient for VHDL to be called

“object-based.”

The main issues that are not addressed by the existing language for high-level modeling are a more dy-

namic concurrent process model; a more abstract form of communication between concurrent processes;

inheritance-based hierarchy (for data types and hardware structures); the form of dynamic polymorphism

that goes with inheritance (namely, dynamic binding); a stronger form of abstraction and encapsulation

for abstract data types (ADTs); and a more flexible form of static polymorphism, such as that represented

by generics in Ada. We maintain that language extensions to support high-level modeling should address

these issues without subverting or replacing existing language features. Furthermore, there should be

a clear separation of concerns between language features, so that a given feature does not attempt to serve

multiple underlying modeling requirements. The interactions between language features should be well

defined and understandable to language users.



13

4.1 Concurrency and Object-Oriented Extensions

One central issue that is not adequately addressed by previous proposals is the relationship between ob-

ject-oriented extensions and the concurrency and communication features in the language. There is a long

history of concurrent language design [2] and, more recently, concurrent object-oriented language design

[1]. In considering the relationship between object-oriented features and concurrency, Lim and Johnson

suggest that

“Designing features for concurrency in OOP languages is not much different from that of other kinds

of languages— concurrency is orthogonal to OOP at the lowest level of abstraction. OOP or not, all

the traditional problems in concurrent programming still remain. However, at the highest levels of

abstraction, OOP can alleviate the concurrency problem . . . by hiding concurrency inside reusable

abstractions.” [35]

We concur with this view, and believe that it applies equally to adding object-oriented features to the con-

current language VHDL. We suggest that the conceptual model for concurrency and communication

should be considered first, then features for object-orientation relating to concurrency and communica-

tion should be designed to integrate with the chosen conceptual model and with existing language fea-

tures.

Concurrency Models

VHDL already has a concurrency model, based on statically instantiated processes communicating and

synchronizing via statically declared signals. Processes express the behaviour of a module, and the exter-

nal signals sensed and driven by the processes embody the interface to the module. An entity declaration

expresses an abstraction of a module’s behavior by presenting the interface in terms of input and output

ports.

Two main problems with the existing language features arise when attempting high-level modeling. First,

the static process structure is inflexible, making it difficult to model such subsystems as multi-threaded

servers in a client/server system. Such servers, which may ultimately be implemented in software, dy-

namically create threads of control to concurrently handle multiple incoming requests for transactions.

Without the ability to dynamically create threads, interleaving the concurrent transactions becomes

cumbersome. The second problem, discussed in Section 3.3, is that communication using VHDL signals

is at too low a level of abstraction. A signal in VHDL is intended to model a physical connection between

hardware modules, and represents the trajectory of values on the connection over time. When modeling
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at a higher level, communication should simply model interaction of processes, possibly with data trans-

fer and possibly with synchronization.

Schumacher and Nebel [43] present a survey of langauges in widespread use for high-level modeling.

A number of them, including Statecharts [23], Estelle [10, 31] and SDL [33, 38], are based on a conceptu-

al model of process behavior described using an extended finite-state machine notation. (The hierarchical

state machines used in Statecharts are also adopted in the more recently proposed Uniform Modeling Lan-

guage (UML) [8].) Processes are statically instantiated in Statecharts, whereas in Estelle and SDL they

can be dynamically instantiated as part of an action associated with a state transition. In all three lan-

guages, the communication structure is statically specified. In Statecharts, communication takes place

through actions in one state machine triggering events in other state machines. In Estelle and SDL, com-

munication takes the form of buffered asynchronous message passing. Estelle also allows a form of com-

munication via shared variables, and SDL also allows synchronous remote procedure call (much like the

rendezvous of Ada). Schumacher and Nebel also identify CSP [25] and its derivative OCCAM [30] as

languages used for high-level modeling. In these languages, the conceptual model of process behavior

is a sequentual thread of program execution. Processes are statically instantiated, and communicate using

unbuffered synchronous message passing on statically instantiated, typed communication channels.

From this brief review of concurrency and communication features in other languages, it can be seen that

there are a range of alternative models. Processes can be statically instantiated, or may be dynamically

instantiated and terminated. Communication can take the form of message passing, remote procedure

call, or through shared data. For the message passing alternative, messages may be sent via statically

instantiated channels or to named destination processes. Further, message passing may be buffered and

asynchronous, or may be unbuffered and synchronous.

Given that VHDL processes currently express behavior using sequential statements like those of pro-

gramming languages, it would seem most appropriate to keep this form, rather than adopting some form

of extended finite-state machine model. In those cases where a state machine formulation of behavior

is clearest, the states and transitions can be readily expressed using sequential code. However, it is not

immediately clear what combination of concurrency and communication features are most appropriate

for high-level modeling, so we leave this as an area for further research. An important consideration in

choosing among the alternatives is to maintain compatibility and conceptual integrity with the existing

language.

As an illustration of a possible extension to the concurrency and communication model of VHDL, we

consider a conceptual model in which processes may be dynamically instantiated and communicate using
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remote procedure call. This is the approach taken in Ada, so we borrow some Ada features for this illustra-

tion. Consider a client/server system in which a client requests transaction of the server, and the server

handles multiple transactions concurrently. In order to allow transaction to proceed concurrently, each

transaction is handled by an agent process created dynamically by the server. The server might be de-

scribed as follows:

server : process is
entry request_transaction ( . . . );

type server_agent is process
entry request_transaction ( . . . );
. . .

end process server_agent;
type server_agent_ref is access server_agent;
. . .

begin
loop

accept request_transaction ( . . .) do
transaction_agent := new server_agent;
requeue transaction_agent.request_transaction;

end accept;
end loop;

end process server;

The server process repeatedly accepts requests to perform a transaction. For each request, it creates a new

instance of the server_agent process type, and forwards the client’s request to the new instance. The serv-

er is then free to accept the next request while the agent processes the previous request.

Object-Orientation

A number of the proposals for extensions to VHDL [5, 6, 11, 45] suggest that object-oriented classes are

the most appropriate mechanism for abstract system-level modeling. While it is true that classes can be

used to model hardware systems, as demonstrated by Kumar et al [34], the class-based approach gives

rise to significant problems. Indeed, Kumar et al state that they “use C++ to demonstrate the usefulness

of object-oriented techniques, not to provide arguments for or against its use in hardware modeling and

design.” It is unfortunate that the term “message passing” is often used to denote method invocation,

since that causes confusion with true message passing between active concurrent objects; thus leading

to a confusion between object-oriented features and concurrency features.

The chief problem with using classes as the focus of modeling concurrent systems is that classes are data-

centric. To use them in this context forces a monitor-based approach to concurrency. Monitors were first

proposed as a concurrency mechanism by Hoare [24], and many of the subsequent concurrent language

proposals arose out of the difficulties inherent in the monitor approach [2], in particular, the difficulties
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arising from nested monitor calls. It may be that the monitors paradigm does not match the way system-

level designers view systems at an abstract level. The fact that many of the system-level description lan-

guages mentioned in Section NO TAG are process-based and use message passing suggests that the

message-passing paradigm may be more appropriate.

We believe that it is inappropriate to prejudice the language extension process by assuming a class-based

solution for system-level modeling at the outset. Classes may be appropriate for data modeling, but the

abstract concurrency issues should be dealt with orthogonally. Classes may then be used to provide en-

capsulation and inheritance for whatever concurrency model is chosen.

4.2 Entities and Object-Oriented Extensions

Two of the proposals for object-oriented extensions to VHDL suggest extending the concept of a design

entity to include aspects of classes. Vista OO-VHDL [45] provides EntityObjects, which extend entities

by allowing inclusion of publicly visible procedures called operations. Benzakki and Djaffri [5] also

propose addition of operations, but to ordinary entities as an alternative to ports. Both proposals allow

derived entities to inherit from parent entities.

We have a number of criticisms of these proposals. Both proposals suffer from the problems of using

classes to model concurrent objects (as discussed above) and subvert the concept of design entities by

using them for this purpose. Design entities, as a language construct, are intended to model instantiable

modules, and to abstract over and encapsulate structure (expressed in terms of component instances) and/

or behaviour (expressed in terms of processes that are sensitive to and assign to signals). Benzakki and

Djaffri at least preserve the view of an entity as a statically instantiable module with a declared interface

and an encapsulated implementation. Our main criticism of that proposal is its poorly conceived concur-

rency control.

Vista OO-VHDL, on the other hand, significantly complicates the semantics of design entities and com-

ponent instances by the way in which it allows dynamic use of the name of an EntityObject instance.

It provides a type called EO_Handle that denotes a name of an EntityObject instance. Values of the type

may be passed as parameters and transmitted using signals. The main problem is that EO_Handle values

are not typed with the signature of the designated EntityObject. Thus, when analyzing an operation call,

it is not possible to check statically that the EntityObject has the required operation. This violates the

strong type-checking philosophy of VHDL, and allows more design errors to pass through the develop-

ment process to run-time. It also imposes run-time overhead in checking for correct use of an EntityOb-

ject. Furthermore, it violates the encapsulation of an object’s implementation. Through a design error
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or poor coding practice, an object might export an EntityObject that provides operations that expose im-

plementation details that are supposed to be hidden. These characteristics of the extension violate the

principles of object-oriented design described by Booch and others, and violate the language design prin-

ciple of coherence with the base language. Swamy et al note that they were “guided by one goal: provid-

ing the language to modelers as quickly as possible” ( [45, page 19]. Perhaps undue haste may have

compromised their language design process.

Our view is that the existing semantics of entities, architectures, components, component instantiation,

port interfaces, signal assignment, and signal sensitivity are central to VHDL as a hardware description

language and are what distinguish it from conventional programming languages. The entity declaration

serves to define an abstract interface for the communication mechanism implemented by a module. If

class features are added to the language and monitor calls used for interprocess communication, then the

monitor interface should be seen as a new aspect of an entity interface. The encapsulation of the imple-

mentation should remain strong. Alternatively, if some other form of concurrency and communication

is added, an abstraction for its communication mechanism should be added to the entity interface with

strong encapsulation. This is an orthogonal issue to adding inheritance to design entities for structural

modeling, as discussed in Section 3.

4.3 Object-Oriented Extensions for Data Modeling

In Section 3, we identified two approaches for object-oriented extensions for data modeling: the program-

ming by extension approach as seen in Ada-95, and the class-based approach. In a conventional program-

ming language, the choice between the two might be seen as a matter of taste. However, in VHDL, there

are some stronger considerations. In both approaches, a declared type represents a set of objects; the type

is either a tagged record type or a class. Objects of the type are then instantiated. In a conventional pro-

gramming language, the only kinds of objects that can be created are constants (immutable storage loca-

tions) or variables (mutable storage locations).1 Assignment to a variable is relatively straightforward.

In the Ada-95 model, it involves computing a value of the type and invoking the assignment operator to

modify the content of the storage location. In the class-based model, the name of the location is encapsu-

lated by the class definition, so assignment involves invoking a method that has access to the name. The

method then computes values and modifies the storage location. (Note that this is different from assign-

ment of references to an object, where the value assigned is the name of the storage location and the type

of the value is a reference type.)

1. We view a file, in the abstract sense, as a variable. It is a mutable location in secondary storage. Its type is a sequence of
values, and it can be read and updated using atomic read and write operations.
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While both of these approaches can translate directly into VHDL for constants and variables, it is not clear

how they translate for signals. One of the main reasons for considering object-orientation is to allow spec-

ification of abstract data types (ADTs), and it seems reasonable to expect to be able to define signals of

an ADT. The difficulty is that signal assignment semantics in VHDL are considerably more involved than

just updating storage locations. Any object oriented-extension for data modeling must address this issue.

In an Ada-95 approach, the a signal name used on the left-hand side of a signal assignment statement

denotes the trajectory stored in a driver for the signal. Values of the correct subtype can be assigned direct-

ly using the signal assignment operator. The mechanism for constructing ADTs under an Ada-95 ap-

proach involves passing objects of the type to and from operation subprograms. Different kinds of

parameters are used for variable and signal objects, so the procedure can determine whether to use variable

or signal assignment. For example, using the instruction type discussed previously:

signal current_instr : instruction;

procedure force_nop (signal instr : out instruction) is
begin

. . .
instr <= nop_instruction;

end procedure;

Dunlop [17] illustrates an Ada-95 approach, and proposes a solution to the problem of a signal’s subtype

changing while part of the signal is being waited on.

In the class-based approach, the state of an ADT is encapsulated with the operations and is only accessible

within the implementation of the operations. In conventional programming languages, the state is usually

represented by variables, and the operations use variable assignment to modify the state. In an extended

VHDL, it might at first seem appropriate to allow an ADT to encapsulate a signal. In that case, signal

assignment should be used to update the state. A corollary is that there should be two kinds of ADTs:

one for variable objects, containing state in the form of variables; and one for signal objects, containing

state in the form of signals. This would require substantial duplication, since, in many cases, objects of

both kinds would be required.

To illustrate this problem, consider a digital signal processing (DSP) system which manipulates values

of a complex-number ADT. Function units within the DSP system communicate complex-number values

between one another over signals, and store complex-number values internally in variables. To deal with

these two cases, a model must provide an ADT that encapsulates a complex-number signal, and a separate

ADT that encapsulates a complex-number variable. Assignment to the encapsulated state within the ADT

implementations must be does with signal assignment in the former ADT, and with variable assignment



19

in the latter ADT. Operations such as addition, conjugation, etc., would be essentially duplicated in the

two implementations. Without duplication of the ADTs in this manner, the strong encapsulation of the

internal state in the ADT would be broken. Such duplication is evident in Objective VHDL [39], although

that language does provide a mechanism for factoring out parts of a class that are common to variable

and signal instances.

A better way of incorporating classes is to constrain the encapsulated state to take the form of variables.

The signal assignment operation would then use the variable assignment and equality operations defined

for the ADT to update and compare values in transactions on signal drivers. Similarly, the signal update

algorithm would use the variable assignment and equality operations to compute driving and effective

values and to determine the occurrence of events on signals.

While both an Ada-95 approach and a class-based approach are feasible, an Ada-95 approach may work

out more neatly within the existing framework of VHDL. In particular, since VHDL already includes

features for defining types and operations in packages, an Ada-95 approach would simply involve an ex-

tension of these features. A class-based approach, on the other hand, would involve duplication of these

features, unnecessarily increasing the complexity of the language semantics. Pursuing the programming

by extension approach will add to the language complexity, but to a far lesser extent.

4.4 Encapsulation

Abstract data types (ADTs) are a central language feature for managing language complexity on large

systems. An ADT is defined by a set of values and a set of operations for manipulating the value. Impor-

tantly, the concrete implementation details of the ADT are hidden. A user of the ADT may only manipu-

late values through the provided operations.

VHDL provides a partial facility for defining ADTs, based on the package features of Ada. In Ada, an

ADT is defined by declaring a private type in a package, along with subprograms that perform the opera-

tions on the ADT. The internal structure of the type is visible only within the package and can only be

manipulated by operations in the package body; it is not visible to users of the type outside of the package.

Unlike Ada, however, VHDL does not provide a means of hiding the concrete details of a type declared

in a package. Thus, an ADT defined in VHDL is only encapsulated by convention— it is assumed that

the user will only manipulate the values through the operations provided in the package.

An early draft of the VHDL-93 standard included proposed features for defining private types in packages

[27]. The issue is more complicated than in Ada, since there are more restrictions on the ways in which
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different types may be used. For example, an access type may not be used as the type of a signal in VHDL.

Thus, if a private type happens to have a concrete realization as an access type, a problem arises when

a user attempts to use the type for a signal. If the user is prevented from doing so, information is effectively

“leaked”about the concrete implementation, thus violating the supposed encapsulation. There are analo-

gous difficulties in Ada, which are handled by specifying limitations on the use of a private type. The

draft VHDL-93 proposal followed this approach, but the features were dropped from the final standard.

We believe that it is important to revisit this issue, as strong encapsulation is necessary for successful im-

plementation of ADTs, which, in turn, are necessary for high-level modeling.

Since ADTs form the basis for object-oriented modeling, any language features included must also sup-

port inheritance. Of issue here is the tension between information hiding from users of an ADT, and mak-

ing information visible to derived ADTs. In C++, this is addressed by the notion of “friend” classes and

“restricted” methods in classes. Information that is restricted is hidden from normal users, but is visible

to sub-classes that refine the ADT. In Ada-95, the issue is addressed by hierarchical packages, in which

private parts are visible to child packages. Thus, whichever approach is followed in extensions to VHDL,

there are models to follow in other languages.

4.5 Shared Variables

VHDL-93 includes shared variables, which are accessible to multiple processes. The current language

definition does not specify concurrency control semantics for concurrent access. However, the 1076a

Working Group has proposed a monitor-based solution to concurrency control [29]. This proposal forms

the basis for the class-based extension suggested by Willis et al [48]. They suggest that concurrency

control be implicit, involving mutual exclusion in the case of multiple processes concurrently calling

monitor operations. In the case of a class instance being nested within a process, no concurrency control

is needed.

The use of classes for data modeling need not, however, imply their use as monitors for shared variables.

It may be more appropriate to distinguish between the language features used for object-oriented data

modeling and those used for concurrency control. This is the approach taken in Ada-95, in which tagged

and derived types are used for data modeling and protected types (a form of monitor) are used for concur-

rency control. For example:
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type shared_instruction is protected

type instr_ptr is access instruction’class;
variable instr : instr_ptr;

function get_instr return instruction’class;
procedure put_instr

( new_instr : instruction’class );

end protected shared_instruction;

In this example, the tagged type instruction and its derivatives and the class-wide type instruction’class

are used to model the instruction set as described in previous sections. The protected type shared_instruc-

tion provides a means of creating a shared variable representing an instruction that can be accessed by

several processes via the subprograms get_instr and put_instr. For a given shared variable of this type,

only one process at a time can activate either of the subprograms. Hence mutually exclusive access to

the encapsulated variable is ensured. The example illustrates the separation of concerns into data model-

ing aspects (based on tagged types and derivation), and concurrency control aspects (protected types).

An alternative approach may be to adopt classes for data modeling and to allow monitors to encapsulate

instances of classes or any other data types. This is another case where concurrency issues and object-ori-

entation should be dealt with orthogonally.

4.6 Multiple Inheritance

There appears to be little agreement whether object-oriented extensions to VHDL should allow multiple

inheritance or only single inheritance. This parallels the debate in the programming language communi-

ty. According to Booch, “multiple inheritance [is] like a parachute: you don’t always need it, but when

you do, you’re really happy to have it on hand” [7, page 124]. The decision between single and multiple

inheritance may ultimately be a secondary consideration. The Ada-95 “programming by extension”style

of data modeling does not support multiple inheritance, so if it is adopted without modification into

VHDL, single inheritance would result. However, the effects of multiple inheritance can be achieved in

Ada-95 by using the programming by extension features in combination with other features. The tech-

niques are outlined in [4]. If a class-based approach is adopted, the C++ or Java model for multiple inheri-

tance may prove an appropriate model to follow. It is not clear how strong the case is for multiple

inheritance in a hardware description language such as VHDL. Implementation costs, added language

complexity, integration with other language features, and complexity of use may be important factors.

4.7 Genericity

There is another aspect of object-oriented extensions to VHDL that is orthogonal to the issues addressed

previously, namely genericity. This is an aspect of polymorphic typing. The inheritance mechanisms
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included in the proposals cited allow expression of “is-a”classification hierarchies, but do not adequately

deal with “is-part-of”hierarchies. For that, an additional mechanism, such as generics in Ada or template

classes in C++, is needed. Ashenden and Wilsey [3] suggest an extension to VHDL package declarations,

based on generic packages in Ada, to allow expression of generic ADTs. The idea of generic types and

generic subprograms could also be used in combination with the proposed data modeling and structure

modeling extensions to allow generic classes or generic entities. This would be useful to describe contain-

er classes that are not bound to a particular contained type. For example, a list of objects might be defined

as:

type list is class
generic ( type element_type is private );
. . .
procedure add ( element : element_type );
. . .

end class;

Genericity would also be useful to describe functional units which can operate on a variety of related types

of data. For example, a shift register that shifts an array of objects might be defined as:

entity shift_reg is
generic ( type item is private; type index is (<>);

type vector is array (index) of item );
port ( shift_clk : in bit; data_in : in item;

data_out : out vector );
end entity;

4.8 Synthesis

VHDL was originally conceived as a hardware design language, without being specifically oriented to-

ward either simulation or synthesis. However, synthesis is an increasingly important part of the design

flow. Early synthesis tools were not able to deal with many of the language constructs that were at a level

of abstraction much above basic hardware devices. Behavioral synthesis tools developed more recently

are able to deal with larger subsets of language features, allowing synthesis to be used earlier in the design

flow. If new high-level modeling features are to be added to VHDL, the synthesizability of the features

must be considered.

The rationale for adding new features for data modeling and system-level modeling is to aid modeling

at a high level of abstraction, above the level at which synthesis would be used. Indeed, there is interest

in using new features for system-level design even before hardware/software partitioning has been per-

formed. Hence, it can be argued that high-level modeling features need not be synthesizable. However,

this view ignores the ongoing development of behavioral synthesis technology [12, 14, 20] and hardware/

software co-synthesis studies [15, 19, 22]. Furthermore, new features added to support high-level model-
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ing are likely to be useful for modeling at lower levels of abstraction as well. Hence, their synthesizability

using current synthesis technology is an important issue. Ignoring the issue of synthesizability when con-

sidering language extensions may ultimately make synthesizability much more difficult. For example,

allowing dynamic communication of entity instance names (as in Vista OO-VHDL [45]) may prohibit

synthesis of method invocation, whereas constraining method invocation to statically determined entity

instances may make synthesis tractable.

Synthesis of proposed object-oriented extensions for structural modeling is less problematic, provided

all binding can be performed when the model is elaborated. For example, if a design entity inherits ports,

processes and component instances, elaboration of the design entity would involve successive elaboration

of the ancestors in the inheritance lattice. This would create a static collection of nets and processes (no

different from the current situation) that would then be synthesized using existing techniques.

5. CONCLUSION

This paper contains an in-depth survey of the previous proposals for introducing object-oriented and high-

level modeling extensions into VHDL. These previous proposals are categorized into three areas based

on the modeling requirements they address: data modeling, structural modeling, and abstract system-lev-

el modeling. Our analysis shows that, while there is much agreement between the proposals, many of

them lack depth of consideration of semantic issues. In particular, they lack generality of applicability

to a wide range of modeling problems, and do not integrate consistently with existing language mecha-

nisms.

In this paper we have also identified a number of issues to be addressed when considering extension to

VHDL. We emphasize the importance of a semantics-based approach to extensions and present our per-

spective on what issues are most important when studying semantic issues for possible extension. Exten-

sions for VHDL (or for that matter, any language) should manifest themselves in semantic and syntactic

structures that are consistent with the existing language structure. Merely bolting “your favorite language

construct” onto the side of an existing language is not only foolish, but likely to destroy the language

semantics. Furthermore, expecting a single language construct to solve the vast array of system-level

modeling problems also leads to disappointment. We believe that a collective of several, carefully crafted

language extensions can be made to migrate VHDL from its current object-based structure to an object-

oriented structure suitable for high-level modeling. We further believe that these structures will enhance

the existing encapsulation and abstraction facilities of VHDL in ways that will expand VHDL’s existing

strengths throughout the entire range of its modeling use. The value of this approach is demonstrated

in the extension of Ada from Ada-83 to Ada-95. As stated in the Ada-9X Rationale [4]:
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“Rather than providing a number of new language features to directly solve each identified applica-

tion problem, the extra capability of Ada 9X is provided by a few primitive language building blocks.

In combination, these building blocks enable programmers to solve more application problems effi-

ciently and productively.”

In performing our analysis of proposals and issues, it has become clear that object-orientation can arise

from a single language feature, such as classes, or from the interaction of a number of features. (The latter

approach is illustrated by Ada-95.) Whichever approach is chosen, language extensions must be designed

to integrate cleanly with the semantic mechanisms and the syntax of the existing language. Furthermore,

it is not sufficient to simply adopt features from programming languages. Rather, one must carefully con-

sider the interaction of a proposed extension with the existing hardware modeling constructs in VHDL,

such as signals and signal assignment. Consideration must also be given to designing a coherent set of

extensions that are not motivated solely by requirements for system-level modeling. For example, while

the introduction of private types and generic types would strengthen the encapsulation and polymorphism

features required for object-orientation, they would be of general value in the language for other modeling

tasks.

Above all, it must be borne in mind that VHDL is a design automation language. As the scope of design

automation advances, the language must advance to keep track. However, those advances must not be

at the expense of existing uses of the language. The expressiveness of the language for specifying hard-

ware systems must be maintained. Due consideration must also be given to the impact of language exten-

sions on analysis, simulation, and synthesis. The language semantics are already complex. By designing

extensions that cleanly integrate with the existing language, we reduce the additional complexity for se-

mantic analysis. Likewise, simulation capacity and performance is already an issue for tool designers

and users. Language extensions that impose significant and pervasive run-time burden are unacceptable.

Synthesis technology is now extending to the level of behavioral synthesis. Language extensions should

not preclude synthesis of high-level modeling constructs by relying exclusively on run-time binding

mechanisms.

Lastly, we believe that the ongoing dialogue in the literature focussing on object-oriented extensions to

VHDL is too narrow. The focus should be on the broader issues of language extensions to better support

a wide range of modeling requirements. The language should become object-oriented only insofar as

such extensions might include features for object-oriented programming and modeling.



25

REFERENCES

[1] G. Agha, “Concurrent Object-Oriented Programming,”Communications of the ACM, vol. 33, no. 9,

pp. 125–141, 1990.

[2] G. R. Andrews and F. B. Schneider, “Concepts and Notations for Concurrent Programming,” ACM

Computing Surveys, vol. 15, no. 1, pp. 1–43, 1983.

[3] P. J. Ashenden and P. A. Wilsey, “Polymorphic Abstract Data Types in VHDL,” Proceedings of In-

ternational Conference on Electronic Hardware Description Languages, Las Vegas, NV, pp. 35–39,

1995.

[4] J. Barnes, Ed. Ada 95 Rationale, vol. 1247. Berlin, Germany: Springer-Verlag, 1997.

[5] J. Benzakki and B. Djaffri, “Object Oriented Extensions to VHDL: the LaMI Proposal,” Proceed-

ings of Conference on Hardware Description Languages ’97, Toledo, Spain, pp. 334–347, 1997.

[6] J.-M. Bergé, W. Nebel, and W. Putzke, Requirements and Design Objectives for an Object-Oriented

Extension of VHDL (OO-VHDL). IEEE DASC OO-VHDL Study Group, working paper,

ftp://vhdl.org/vi/oovhdl/papers/dod_aug96.rtf, 1996.

[7] G. Booch, Object-Oriented Analysis and Design with Applications. Redwood City, CA: Benjamin/

Cummins, 1994.

[8] G. Booch, The Best of Booch. New York, NY: SIGS Books and Multimedia, 1996.

[9] F. P. Brooks, Jr., The Mythical Man-Month, Anniversary ed. Reading, MA: Addison-Wesley, 1995.

[10] S. Budkowski and P. Dembinski, “An Introduction to Estelle: A Specification Language for Distrib-

uted Systems,” Computer Networks and ISDN Systems, vol. 14, no. 1, pp. 3–23, 1987.

[11] D. Cabanis and S. Medhat, “Classification-Orientation for VHDL: A Specification,”Proceedings of

VHDL International Users Forum Spring ’96 Conference, Santa Clara, CA, pp. 265–274, 1996.

[12] R. Camposano and W. H. Wolf, Eds., High-Level VLSI Synthesis. Boston, MA: Kluwer Academic

Publishers, 1991.

[13] O. J. Dahl and K. Nygaard, “Simula: An Algol Based Simulation Language,” Communications of

the ACM, vol. 9, no. 9, pp. 671–678, 1966.



26

[14] G. de Micheli, Synthesis and Optimization of Digital Circuits. New York, NY: McGraw-Hill, 1994.

[15] G. de Micheli and M. Sami, Eds., Hardware/Software Co-design. Dordrecht, Netherlands: Kluwer

Academic Publishers, 1996.

[16] D. D. Dunlop, “Object-Oriented Extensions to VHDL,” Proceedings of VHDL International Users

Forum Fall ’94 Conference, McLean, VA, pp. 5.1–5.9, 1994.

[17] D. D. Dunlop, VHDL Structure Varying Signals and OO Extensions to the VHDL Type System. IEEE

DASC OO-VHDL Study Group, working paper, ftp://vhdl.org/vi/oovhdl/papers/structure-varying-

signals.txt, 1995.

[18] W. Ecker, “An Object-Oriented View of Structural VHDL Description,” Proceedings of VHDL In-

ternational Users Forum Spring ’96 Conference, Santa Clara, CA, pp. pp. 255–264, 1996.

[19] R. Ernst, J. Henkel, and T. Benner, “Hardware-Software Co-synthesis for Microcontrollers,” IEEE

Design and Test of Computers, vol. 10, no. 4, pp. 64–75, 1993.

[20] D. D. Gajski, N. D. Dutt, A. C.-H. Wu, and S. Y.-L. Lin, High-Level Synthesis : Introduction to Chip

and System Design. Boston, MA: Kluwer Academic Publishers, 1992.

[21] J. Gosling, B. Joy, and G. L. Steele, The Java Language Specification. Reading, MA: Addison-

Wesley, 1996.

[22] R. Gupta and G. de Micheli, “System Co-synthesis for Digital Systems,” IEEE Design and Test of

Computers, vol. 10, no. 3, pp. 29–41, 1993.

[23] D. Harel, “Statecharts: A Visual Formalism for Computer Systems,”Science of Computer Program-

ming, vol. 8, no. 3, pp. 231–274, 1987.

[24] C. A. R. Hoare, “Monitors: An Operating System Structuring Concept,” Communications of the

ACM, vol. 17, no. 10, pp. 549–557, 1974.

[25] C. A. R. Hoare, “Communicating Sequential Processes,” Communications of the ACM, vol. 21, no.

11, pp. 934–941, 1978.

[26] C. A. R. Hoare, “Hints on Programming Language Design,” in Essays in Computing Science, C. A.

R. Hoare and C. B. Jones, Eds. Herts, UK: Prentice Hall, 1989, pp. 193–216.

[27] IEEE, Draft Standard VHDL Language Reference Manual. Draft Standard P1076-1992/A, New

York, NY: IEEE, 1992.



27

[28] IEEE, Standard VHDL Language Reference Manual. Standard 1076-1993, New York, NY: IEEE,

1993.

[29] IEEE, Standard VHDL Language Reference Manual. Draft Standard P1076a-1997, New York, NY:

IEEE, 1997.

[30] INMOS Ltd., OCCAM Programming Manual. London, UK: Prentice-Hall, 1984.

[31] ISO, Estelle: A Formal Description Technique Based on an Extended State Transition Model. Draft

International Standard 9074, 1987.

[32] ISO/IEC, Ada 95 Reference Manual. International Standard ISO/IEC 8652:1995 (E), Berlin, Ger-

many: Springer-Verlag, 1995.

[33] ITU, Specification and Description Language (SDL). Revised Recommendation Z.100, 1992.

[34] S. Kumar, J. H. Aylor, B. W. Johnson, and W. A. Wulf, “Object-Oriented Techniques in Hardware

Design,” IEEE Computer, vol. 9, no. 6, pp. 64–70, 1994.

[35] J. Lim and R. E. Johnson, “The Heart of Object-Oriented Concurrent Programming,” ACM SIG-

PLAN Notices, vol. 24, no. 4, Proceedings of ACM SIGPLAN Workshop on Object-Based Concur-

rent Programming, pp. 165–167, 1989.

[36] M. T. Mills, Proposed Object Oriented Programming (OOP) Enhancements to the Very High Speed

Integrated Circuits (VHSIC) Hardware Description Language (VHDL), Wright Laboratory, Day-

ton, OH, Tech. Report WL-TR-5025, 1993.

[37] M. T. Mills, A Minor Syntax Change to VHDL Yields Major Object Oriented Benefits. IEEE DASC

OO-VHDL Study Group, ftp://vhdl.org/vi/oovhdl/papers/mills.oct.95.ps, 1995.

[38] A. Olsen, O. Færgemand, B. Møller-Pedersen, R. Reed, and J. R. W. Smith, Systems Engineering

using SDL-92. Amsterdam: Elsevier, 1994.

[39] M. Radetzki, W. Putzke, W. Nebel, S. Maginot, J.-M. Bergé, and A.-M. Tagant, “VHDL Language

Extensions to Support Abstraction and Re-Use,” Proceedings of Workshop on Libraries, Compo-

nent Modeling, and Quality Assurance, Toledo, Spain, 1997.

[40] C. R. Ramesh, “Object Orienting VHDL for Component Modeling,”Proceedings of VHDL Interna-

tional Users Forum Fall ’94 Conference, McLean, VA, pp. 5.17–5.28, 1994.



28

[41] A. Sarkar, R. Waxman, and J. P. Cohoon, “Specification-Modeling Methodologies for Reactive-Sys-

tem Design,” in High-Level System Modeling: Specification Languages, vol. 3, Current Issues in

Electronic Modeling, J.-M. Bergé, O. Levia, and J. Rouillard, Eds., 1995, pp. 1–34.

[42] G. Schumacher and W. Nebel, “Inheritance Concept for Signals in Object-Oriented Extensions to

VHDL,” Proceedings of Euro-DAC ’95 with Euro-VHDL ’95, Brighton, UK, pp. 428–435, 1995.

[43] G. Schumacher and W. Nebel, “Survey on Languages for Object Oriented Hardware Design Meth-

odologies,” in High-Level System Modeling: Specification Languages, vol. 3, Current Issues in

Electronic Modeling, J.-M. Bergé, O. Levia, and J. Rouillard, Eds., 1995, pp. 35–50.

[44] B. Stroustrup, The C++ Programming Language. Reading, MA: Addison-Wesley, 1986.

[45] S. Swamy, A. Molin, and B. Covnot, “OO-VHDL: Object-Oriented Extensions to VHDL,” IEEE

Computer, vol. 28, no. 10, pp. 18–26, 1995.

[46] R. D. Tennent, “Language Design Methods Based on Semantic Principles,”Acta Informatica, vol. 8,

pp. 97–112, 1977.

[47] P. Wegner, “Dimensions of Object-Based Language Design,” ACM SIGPLAN Notices, vol. 22, no.

12, Proceedings of OOPSLA ’87, pp. 168–182, 1987.

[48] J. C. Willis, S. A. Bailey, and R. Newschutz, “A Proposal for Minimally Extending VHDL to

Achieve Data Encapsulation Late Binding and Multiple Inheritance,” Proceedings of VHDL Inter-

national Users Forum Fall ’94 Conference, McLean, VA, pp. 5.31–5.38, 1994.

[49] N. Wirth, “From Programming Language Design to Computer Construction,” Communications of

the ACM, vol. 28, no. 2, pp. 160–164, 1985.


