

- 4 -

ELEC516 Digital VLSI System Design and Design Automation (Spring, 2010)

Assignment 3: Adder Structures Implementation & Filter Design

Due Date: 1/4/2010
Objective

This assignment will guide you to be familiar with writing VHDL code. In this assignment, you are required to implement different structures of the most basic arithmetic unit in a typical ALU—adder and multiplier. Further, you are going to implement a simple 4-tap FIR filter based on the given structure (which is a pipelined structure).
Hand In

Please submit a report including answers to the questions asked during the assignment. The source code of your designs, the corresponding schematics, timing and area reports, etc. should be included in the report. For the filter, pre-, post and post layout simulation waveforms, timing and area reports with and without .sdf file, schematic and layout should be submitted.

Synopsys Setup and Directory Structure

Copy structured folder which includes the synopsys and encounter system files to your home directory. The system files are necessary for the synthesis, simulation, placing and routing. (e.g. .synopsys_dc.setup, .synopsys_vss.setup, vtvtlib25.lef, vtvtlib25.tlf)

>cp -r /staff/ee/dept/public/elec516/template_vtvt ~/elec516_lab2

For other assignments and project, you should also copy the directory to your local directory by changing ‘lab2’ to other names.

Please put all your VHDL design under /elec516_lab2/synopsys/vhdl/ directory, run the VHDL Analyzer and simulator under /elec516_lab2/synopsys/sim/ directory, invoke Synopsys Design Analyzer under /elec516_lab2/synopsys/syn/ directory and use encounter under /elec516_lab2/encounter/ directory.

Assignment 2.1 Adder Structure implementation

Assignment 2.1.1 Design a 16 bit Ripple Carry Adder

The easiest implementation of an adder is RCA. It uses a bit-slice approach which means that an N-bit adder is composed of N 1-bit adders cascaded together. The implementation of 1 bit adder is given in the following truth table.

	A
	B
	CIN
	S
	COUT

	0
	0
	0
	0
	0

	0
	0
	1
	1
	0

	0
	1
	0
	1
	0

	0
	1
	1
	0
	1

	1
	0
	0
	1
	0

	1
	0
	1
	0
	1

	1
	1
	0
	0
	1

	1
	1
	1
	1
	1

From the above truth table, we can find the Boolean expression for S and COUT

S
= A xor B xor CIN

COUT
= (A and B) or (CIN and (A or B))

Write the VHDL code for 1 bit adder. By using the 1 bit adder, implement a 6 bit ripple carry adder. Also write the corresponding test bench and configuration file. You may take the adder in lab1 for the reference. Verify your design by high level behavior simulation. Synthesize it and run gate level simulation. Check the output correctness from the adder output and report the area and maximum delay of your design.

Assignment 2.1.2 Design a 16 bit Carry Look Ahead Adder

In order to tradeoff speed, extra logic is used to compute the carry out in advance. Besides, optimization is made to realize the adder function. Two new signals are defined: propagate and generate. The corresponding truth table is shown below.

	A
	B
	CIN
	P
	G
	S
	COUT

	0
	0
	0
	0
	0
	0
	0

	0
	0
	1
	0
	0
	1
	0

	0
	1
	0
	1
	0
	1
	0

	0
	1
	1
	1
	0
	0
	1

	1
	0
	0
	1
	0
	1
	0

	1
	0
	1
	1
	0
	0
	1

	1
	1
	0
	0
	0
	0
	1

	1
	1
	1
	0
	1
	1
	1

From the above truth table, we can find the Boolean expression of P and G, and hence S and COUT can be expressed in terms of P, G.

P
= A xor B

G
= A and B

S
= P xor CIN

COUT
= (P and CIN) or G

Write two sub-modules, one for PG generator and one for Carry generator. Use the two modules to build the 16-bit hierarchical carry look ahead adder. Notice that carry look ahead adder means the carry should be directly computed from the primary input and independent from previous bit carry out. Run the behavior simulation, synthesis and the gate level simulation. Check the correctness of the adder output and record area and maximum delay of the design.

Question 1: What is the percentage improvement of speed of 16 bit carry look ahead adder compare with ripple carry adder?

Assignment 2.1.3 Design a 16 bit Carry Select Adder

With the insight of carry look ahead adder, we can also pre-compute the sum by assuming the value of CIN. Then we can select the corresponding S when the CIN arrives. By applying the above concept, the corresponding S and COUT will be expressed in a different way.

S0
= A xor B

S1
= ! (A xor B)

COUT0= A and B

COUT1= A or B

Decide which carry bit is used to implement the select function. Implement the above adder, run the behavior simulation and synthesis and gate level simulation. Check the correctness of the adder output and record the area and the maximum delay of your design.

Question 2: What is the percentage improvement of speed of 16-bit carry select ahead adder compare with ripple carry adder?

Question 3: Compare with carry look ahead adder, which is faster?

Assignment 2.2 Design a 5 * 5 bit 2’s complement multiplier .

You can use whatever architecture that you want to design a 5*5 bit multiplier.
Please notice the multiplier and multiplicand are represented using 2’s complement. And the highest bit is the sign bit (1 is negative and 0 is positive). Also the product is represented by 2’s complement.
 Run the behavior simulation, synthesis and the gate level simulation. Check the correctness of the multiplier output and record area and maximum delay of the design.

Question 4: What is the area and critical path delay of the multiplier?
Assignment 2.2 A Simple 4-tap FIR Filter Design (which is a pipelined structure)

In this section, a simple sequential system: a 4-tap FIR filter should be implemented which utilizing the adder you designed before. Here the 4-tap low pass FIR filter is represented by

[image: image1.wmf]0123

()()(1)(2)(3)

ynaxnaxnaxnaxn

=*+*-+*-+*-

where both the coefficient ai and input x(i) are 4-bit positive integer. The direct implementation of the filter is shown as the following:

[image: image2.emf]X[n]

Y[n]

DFFDFFDFF

a3

a2

a1a0

where D represents the delay element, it can be a D-Flipflop that controlled by the clock signal.

In this filter design, you have to decide the bit width of the intermediate data and the output such that there are no overflow in the computation.

1. Write the VHDL code for the t D-Flipflop in the filter using process statement (Notice the bit-width for each D flip-flop may be different).

2. Referring to the figure above, write the top level structure description for the filter in VHDL which consists of 4 multipliers (you can use the 4*4 bit array multiplier offered in assignment 2 or use the 5*5 bit 2’s complement multiplier designed in step 2.2; since the coefficients and inputs are all positive, you can just adding zero as the sign-bit to form a 5-bit 2’s complement representation) , 4 k-bit adders and four D-Flipflops. For the adder, you can choose any one from your adder designs in section 2.1 (Notice that the bit-width is different now).
3. Write the testbench and configuration file, carry out the behavior simulation. Record the simulation waveform of the output when input series is “0, B, 1, F, 2, D, 3, C 4, B, 5, A, 6, 9, 7, 8, 0, B, 1, F, …” and (a0, a1,a2 and a3) equal to (3, 6, 7,9)

Note: You can specify the simulation time in the run.sim file for your simulation, in case that there are no stop statements in your testbench, e.g., if you want the simulation stop at 500ns, write the following in your run.sim file.

run 500000

quit

4. Synthesize the filter design using design analyzer.

a. Analyze all the VHDL files including the multiplier, adder, D-Flipflop and top-level filter. Elaborate the top level design-“filter”. You can see 4 designs in the Synopsys Window. Check what’s inside in the filter schematic.

b. Select the filter icon, Link and Check the filter design .Code ‘1’ should be returned if no error occurs.

c. Select the filter icon, in the command window, type “ungroup –all”. Check what’s inside in the filter schematic again, any difference? Go to the design view, select adder icon and D-Flipflop icon seperately, and delete the 2 icons by “Edit(Delete”.

d. Go to the symbol view of the filter, set input Driving Strength for input pin ‘clk’ and ‘x’. Set Output Capacitance Load and Fanout Load for output pin ‘y’, as in assignment 1(A).

e. Select the input ‘clk’ of the filter, click “Attribute(Clocks(Specify..”, in the pop out window, type “10000”(10ns) in the period, uncheck “Fix Hold” and “Don't Touch Network”. Click “Apply”, you will see a red clock symbol near the pin ‘clk’.

f. Define Input Arrival Time for input pin ‘x’ and define Output Ready Time for output pin ‘y’ as steps in assignment 1(A), note that both actions should be relative to pin ‘clk’.

g. Set optimization directives and setting constraints for timing critical design (set_max_delay 0 –from all_inputs()), and save the design hierarchy as “filter_before compile.db”.

h. Perform the steps 23-30 in assignment 1(A) for the filter synthesis. Get the synthesized filter design, save it as “filter_after_compile.db”. Report the timing and area of the design from design_analyzer and record the schematic of the synthesized filter.

5. Select the filter icon, export the verilog netlist and VHDL netlist for the synthesized filter as step 31 in Assignment 1(B).

6. Carry out the gate level simulation using the exported VHDL netlist ,record the simulation waveform.

7. Finish the design auto place, route and post-layout simulation for the filter. Record the final layout from encounter, post layout timing report for the maximum delay and the post layout simulation waveform. Compare the critical path delay between the post and the post layout designs.

Note: Since this is a very small and simple filter design, when routing, the timing problem would not be very hazard and you can route the clock as an ordinary signal.

[image: image3.png][image: image4.png]

ELEC516 (Spring, 2010)
 Dept. of ECE, HKUST Assignment2--Page 4 of 5

_1330284674.unknown

_1330284744.vsd
DFF

X[n]

Y[n]

a3

a2

a1

a0

DFF

DFF

