
Designing with Actel
Windows and UNIX Environments

Actel Corporation, Sunnyvale, CA 94086
© 1998 Actel Corporation. All rights reserved.

Printed in the United States of America

Part Number: 5029100-2

Release: May 1999

No part of this document may be copied or reproduced in any form or by
any means without prior written consent of Actel.

Actel makes no warranties with respect to this documentation and disclaims
any implied warranties of merchantability or fitness for a particular
purpose. Information in this document is subject to change without notice.
Actel assumes no responsibility for any errors that may appear in this
document.

This document contains confidential proprietary information that is not to
be disclosed to any unauthorized person without prior written consent of
Actel Corporation.

Trademarks
Actel and the Actel logotype are registered trademarks of
Actel Corporation.

Adobe and Acrobat Reader are registered trademarks of
Adobe Systems, Inc.

Cadence is a registered trademark of Cadence Design Systems, Inc.

Mentor Graphics is registered trademark of Mentor Graphics, Inc.

Sun and Sun Workstation, SunOS, and Solaris are trademarks or registered
trademarks of Sun Microsystems, Inc

Synopsys is a registered trademark of Synopsys, Inc.

Verilog is a registered trademark of Open Verilog International.

Viewlogic, ViewSim, and ViewDraw are registered trademarks and
MOTIVE and SpeedWave are trademarks of Viewlogic Systems, Inc.

Windows is a registered trademark and Windows NT is a trademark of
Microsoft Corporation in the U.S. and other countries.

UNIX is a registered trademark of X/Open Company Limited.

All other products or brand names mentioned are trademarks or registered
trademarks of their respective holders.
ii

Table of Contents

Introduction . xi
Document Organization xi

Document Assumptions xii

Document Conventions xiii

Actel Manuals . xiii

On-Line Help . xv

1 Designer Series Overview 1
ACTgen Macro Builder. . 1

ACTmap VHDL Synthesis 1

Silicon Expert . 1

Designer . 2

Schematic-Based Design Methodology 5

HDL Synthesis-Based Design Methodology 5

2 Actel Design Flows . 7
Schematic-Based Design Flow Illustrated 7

Schematic-Based Design Flow Overview 8

HDL Synthesis-Based Design Flow Illustrated 10

HDL Synthesis-Based Design Flow Overview 11

3 Design Considerations 15
Naming Conventions . 15

Hierarchical Designs . 19

Multiple Sheet Designs. 19

Actel Libraries . 19

Adding Power and Ground 19

Adding a Global Network 20

Combinability . 22

Net Loading . 30

Logic and I/O Utilization. 31

Adding Properties . 32

Adding Input and Output Pins to the Design 32
iii

Table of Contents
Generating a Top-Level Symbol 38

Entering Constraints for Timing Driven Place and Route 38

Estimating Pre-Layout Timing 38

Adding ACTgen Macros 39

4 Generating Macros Using ACTgen 41
ACTgen Features . 41

ACTgen Main Window. 42

Generating New Macros 43

Modifying Existing Macros 44

Fan-in Control Tool . 46

Generating a Macro Report. 48

5 ACTmap VHDL Synthesis Tool 51
ACTmap Features . 51

ACTmap Windows. . 52

Compiling VHDL . 54

Optimizing a Netlist . 55

Translating a Netlist . 57

Defining I/Os . 58

Implementing a Hierarchical Project 59

Configuration Files . 61

Using ACTmap in Batch Mode 62

6 Design Implementation Using Designer 63
Importing a Netlist/Compiling a New Design 63

Opening an Existing Design 69

Importing (DCF), (PIN), and (CRT) Information 70

Changing Design Name and Family. 71

Changing Other Design Information 72

DT Edit . 76

Assigning Pins. . 80

PinEdit . 81
iv

Table of Contents
DT Analyze . 83

ChipEdit . 84

Layout . 84

Extracting Timing Information 87

Fuse . 88

Exporting Files . 89

Generating Reports . 90

Setting Designer Preferences 94

Terminating the Designer Session 94

7 Timing Analysis using DT Analyze 95
DT Analyze . 95

DT Analyze Examples101

Batch Timer . .112

8 Generating a Programming File 113
Silicon Signature. .113

Generating a Programming File 113

A ChipEdit .117
ChipEdit Window .117

Placing Macros .120

Moving Macros .121

Fixing Macros . .121

ChipEdit View Options 122

B Using Designer Script125
Running Designer in Batch Mode. 125

Designer Script Language 127

Supported Commands128

Set Command Variables 132

Script Examples . .133

C Product Support . .137
v

Table of Contents
Actel U.S. Toll-Free Line137

Customer Service .137

Customer Applications Center 138

Guru Automated Technical Support 138

Web Site .138

FTP Site . .139

Electronic Mail .139

Worldwide Sales Offices140

Index .141
vi

List of Figures

Actel Schematic-Based Design Flow 7

Actel HDL-Based Design Flow 10

Combined Combinatorial Macros 23

Combined Combinatorial and Sequential Macros 23

Complex Macros Divided . 24

Logic Modules Decreased . 25

Logic Reduced to One Sequential Module 25

Unused Logic Removal . 26

Constant Input Reduction . 26

Fan-in Reduction . 27

Delays Before Combining . 27

Delays After Combining . 28

DFM Ties-Offs to Reduce Logic Module Count 29

Buffering . 30

Duplicating Logic . 30

Adding ALSPRESERVE Property to a Net 32

Adding ALSPIN Property to a Net 33

System Configuration for Unused Pins 37

Tri-Stating Unused Pins . 37

Critical Path Timing Example 39

ACTgen Main Window . 42

Fan-in Control Dialog Box 48

ACTgen .log File . 50

ACTmap Main Window . 53

Designer Main Window . 63

Import Netlist Dialog box . 64

Setup Design Dialog Box . 65

Device Selection Dialog Box (Standard) 65

Device Selection Dialog Box (SX/SXA) 66

Device Variations Dialog Box 67

Operating Conditions Dialog Box 68

DT Edit Window . 76
vii

List of Figures
PinEdit Window . 81

Layout Dialog Box . 85

Extract Dialog Box . 88

Export Dialog Box . 89

Timing Report Dialog Box . 92

Timing Report Preferences Dialog Box 93

Program Preferences Dialog Box 94

DT Analyze Filters Dialog Box 96

DT Analyze Preferences . 97

DT Analyze Window . 98

Expand List Dialog Box . 99

Expanded Chart Dialog Box101

Sample Circuit .102

Maximum Register-to-Register Delay103

Expanded Maximum Register-to-Register Delay104

Clock-to-Output Delay .105

Clock-to-Output Delay .106

Input-to-Output Delay .107

Input-to-Output Delay .108

On-Chip Delays .110

On-Chip Data Path Delay .111

Designer Main Window . .114

Fuse Dialog Box .115

ChipEdit Window . .117

Macros Displayed Hierarchically122

List Boxes Configuration Dialog Box123
viii

List of Tables

Global Network Attributes 20

ACT 3 Elements that Cannot Connect to HCKLBUF 21

54SX Elements that Cannot Connect to HCKLBUF 22

Junction Temp. Deltas at 1W Power Consumption 75

Constraint Results . 79

Chip Window Colors and Symbols 119

Supported Script Commands 128
ix

Introduction

The Designing with Actel manual contains information and procedures
for using the Designer Series Development System software to create
designs for and program Actel devices.

This manual includes information about the Designer software, which
allows you to import a netlist generated from a third-party CAE tool,
place and route the design, perform static timing analysis, extract
timing information, and generate a programming file to program an
Actel FPGA.

Also included in this manual is information about the Actel ACTgen
Macro Builder macro generation software, which allows you to
generate optimized macro blocks for your design, and the ACTmap
VHDL Synthesis tool, which allows you to optimize VHDL designs for
Actel devices.

This manual also refers to other Actel documents that contain
additional information, including CAE software interface guides and
simulation guides with specific information about using CAE tools with
the Designer Series Development System. Refer to “Actel Manuals” on
page xiii for a list of documents.

Document Organization
The Designing with Actel manual is divided into the following chapters:

Chapter 1 - Designer Series Overview gives an overview of the
programs contained in the Designer Series Development system
software.

Chapter 2 - Actel Design Flows illustrates and describes the design
flow for creating Actel designs using the Designer Series software and
third-party CAE tools.

Chapter 3 - Design Considerations contains useful information and
procedures about creating designs using the Actel Designer Series
software.

Chapter 4 - Generating Macros Using ACTgen contains information
about creating macros using the ACTgen Macro Builder software.
xi

Introduction
Chapter 5 - ACTmap VHDL Synthesis Tool contains information
about using the ACTmap VHDL synthesis tool.

Chapter 6 - Design Implementation Using Designer contains
information about implementing designs using the Designer Series
software.

Chapter 7 - Timing Analysis using DT Analyze contains information
and procedures about performing timing analysis using DT Analyze in
Designer.

Chapter 8 - Generating a Programming File contains information
and procedures about generating a Actel device programming file for
Actel or third-party programmers.

Appendix A - Chip Edit contains information and procedures about
using the ChipEdit feature of Designer, which allows you to view the
location of your design’s macros and edit the placement of both I/O
and logic macros in your design.

Appendix B - Using Designer Script provides information about
using the Actel Designer script language.

Appendix C - Product Support provides information about
contacting Actel for customer and technical support.

Document Assumptions
The information in this manual is based on the following assumptions:

1. You have installed the Designer Series software.

2. You are familiar with UNIX workstations and UNIX operating
systems, or with PCs and Windows operating environments.

3. You are familiar with FPGA architecture and FPGA design software.
xii

Introduction
Document Conventions
The following conventions are used throughout this manual.

Information that is meant to be input by the user is formatted as
follows:

keyboard input

The contents of a file is formatted as follows:

file contents

Messages that are displayed on the screen appear as follows:

Actel Manuals
The Designer Series software includes printed and on-line manuals.
The on-line manuals are in PDF format on the CD-ROM in the
“/manuals” directory. These manuals are also installed onto your
system when you install the Designer software. To view the on-line
manuals, you must install Adobe® Acrobat Reader® from the CD-ROM.

The Designer Series includes the following manuals, which provide
additional information on designing Actel FPGAs:

Designing with Actel. This manual describes the design flow and user
interface for the Actel Designer Series software, including information
about using the ACTgen Macro Builder and ACTmap VHDL Synthesis
software.

Actel HDL Coding Style Guide. This guide provides preferred coding
styles for the Actel architecture and information about optimizing your
HDL code for Actel devices.

ACTmap VHDL Synthesis Methodology Guide. This guide contains
information, optimization techniques, and procedures to assist
designers in the design of Actel devices using ACTmap VHDL.

Screen Message
xiii

Introduction
Silicon Expert User’s Guide. This guide contains information and
procedures to assist designers in the use of Actel’s Silicon Expert tool.

DeskTOP Interface Guide. This guide contains information about using
the integrated VeriBest® and Synplicity® CAE software tools with the
Actel Designer Series FPGA development tools to create designs for
Actel Devices.

Cadence® Interface Guide. This guide contains information and
procedures to assist designers in the design of Actel devices using
Cadence CAE software and the Designer Series software.

Mentor Graphics® Interface Guide. This guide contains information
and procedures to assist designers in the design of Actel devices using
Mentor Graphics CAE software and the Designer Series software.

MOTIVE� Static Timing Analysis Interface Guide. This guide contains
information and procedures to assist designers in the use of the
MOTIVE software to perform static timing analysis on Actel designs.

Synopsys® Synthesis Methodology Guide. This guide contains preferred
HDL coding styles and information and procedures to assist designers
in the design of Actel devices using Synopsys CAE software and the
Designer Series software.

Viewlogic Powerview® Interface Guide. This guide contains
information and procedures to assist designers in the design of Actel
devices using Powerview CAE software and the Designer Series
software.

Viewlogic Workview Office Interface Guide. This guide contains
information and procedures to assist designers in the design of Actel
devices using Workview Office CAE software and the Designer Series
software.

VHDL Vital Simulation Guide. This guide contains information and
procedures to assist designers in simulating Actel designs using a Vital
compliant VHDL simulator.

Verilog Simulation Guide. This guide contains information and
procedures to assist designers in simulating Actel designs using a
Verilog simulator.
xiv

Introduction
Activator and APS Programming System Installation and User’s Guide.
This guide contains information about how to program and debug
Actel devices, including information about using the Silicon Explorer
diagnostic tool for system verification.

Silicon Sculptor User’s Guide. This guide contains information about
how to program Actel devices using the Silicon Sculptor software and
device programmer.

Silicon Explorer Quick Start. This guide contains information about
connecting the Silicon Explorer diagnostic tool and using it to perform
system verification.

Designer Series Development System Conversion Guide UNIX®

Environments. This guide describes how to convert designs created in
Designer Series versions 3.0 and 3.1 for UNIX to be compatible with
later versions of Designer Series.

Designer Series Development System Conversion Guide Windows
Environments. This guide describes how to convert designs created in
Designer Series versions 3.0 and 3.1 for Windows to be compatible
with later versions of Designer Series.

Actel FPGA Data Book. This guide contains detailed specifications on
Actel device families. Information such as propagation delays, device
package pinout, derating factors, and power calculations are found in
this guide.

Macro Library Guide. This guide provides descriptions of Actel library
elements for Actel device families. Symbols, truth tables, and module
count are included for all macros.

A Guide to ACTgen Macros. This Guide provides descriptions of
macros that can be generated using the Actel ACTgen Macro Builder
software.

On-Line Help
The Designer Series software comes with on-line help. On-line help
specific to each software tool is available in Designer, ACTgen,
ACTmap, Silicon Expert, Silicon Explorer, Silicon Sculptor, and APSW.
xv

1
Designer Series Overview

The Designer Series Development System is an integrated suite of user-
friendly tools for PC and Workstation environments that takes your
design idea to working silicon quickly and easily. These tools are
created to satisfy the demands of today’s design engineers to accelerate
the system logic design process. This chapter describes the
components and features of the Designer Series Development System.

ACTgen Macro Builder
ACTgen is a graphical macro generation tool that creates optimized
logic elements that can be easily included in your schematic or
synthesis design. Architecture-specific rules control the generation of
macros, so the quality of output is “correct by construction,” and no
logic verification is required. Refer to “Generating Macros Using
ACTgen” on page 41 for additional information.

ACTmap VHDL Synthesis
Designed to deliver high quality results the first time out, ACTmap is a
complete, streamlined VHDL synthesis tool that also optimizes gate-
level descriptions. Refer to “ACTmap VHDL Synthesis Tool” on page 51
for additional information.

Silicon Expert
Silicon Expert can be used during design creation to add I/Os to a
design, balance buffer trees, or generate a netlist report. Silicon Expert
can also be used after design creation to translate a structural netlist
from one format to another. Refer to the Silicon Expert User’s Guide for
additional information.
1

Chapter 1: Designer Series Overview
Designer
Designer is an interactive design implementation tool that can import
designs created with popular third-party schematic and HDL CAE tools.
Designer features fully automatic layout, pin fixing, a chip editor, and a
back annotation utility. Designer also includes DirectTime (DT) tools,
including DT Edit and DT Layout for timing driven place and route,
and DT Analyze for static timing analysis. These tools allow designers
to define, layout (place and route), verify, and program high
performance designs at high levels of utilization with improved
designer productivity. Refer to “Design Implementation Using
Designer” on page 63 for additional information.

Design Flow
Manager

Designer uses a Design Flow Manager that graphically displays the
completed steps of the design implementation process. Design Flow
Manager also keeps track of information required to begin each step of
the design’s current status, and design source changes, so you don’t
have to.

Designer also uses demand-driven options that allow users to click any
button in the Designer Main window to begin the design
implementation process. Designer then prompts the user through all of
the necessary steps of the flow to complete the step that was selected.

Compile Compile reads in a netlist and compiles the design into an Actel
database (ADB) file. Compile contains a variety of functions, including
the Combiner and the Design Rule Checking functions, that perform
legality checking and basic netlist optimization. Compile also checks
for netlist errors (bad connections and fan-out problems), removes
unused logic (gobbling), and combines functions to reduce logic count
and improve performance (combining or logic collapsing). In addition,
Compile verifies that the design fits into the selected device. Refer to
“Importing a Netlist/Compiling a New Design” on page 63 for
additional information.
2

Designer
DT Edit DT Edit allows designers to define timing requirements for critical
paths in a design for use in timing driven place and route using DT
Layout. The requirements can also be used for timing verification in
DT Analyze or timing reports. DT Edit must be used to perform timing
driven place and route using DT Layout. Refer to “DT Edit” on page 76
for additional information.

PinEdit PinEdit is a graphical interface that allows designers to view pin
locations and manually assign, edit, and fix pin locations for a design.
Manual pin assignment is optional. However, PinEdit should be used
to fix pins that are automatically assigned by Designer to maintain pin
locations once a design is ready to be used to program a device. Refer
to “PinEdit” on page 81 for additional information.

Layout Layout (place and route) takes the design netlist information, PinEdit
information (optional), and DT Edit information (DT Layout only), and
maps the information into the selected device. Designer includes
Incremental Layout, which allows designers to speed through design
iterations by only re-laying out netlist information that has changed.
Two layout modes are supported, Standard and DirectTime.

Standard Layout

Standard layout is available for non-performance-critical applications.
Standard layout maximizes the average performance for all paths and
treats each part of a design equally for performance optimization,
using net weighting (or criticality) to influence the results.

DT Layout

For timing critical designs, DT Layout uses timing requirements entered
in DT Edit to constrain Layout. DT Layout is a fully automatic timing
driven place and route utility that focuses resources to meet
performance requirements. DT Layout takes 2 to 4 times longer than
Standard Layout. Refer to “Layout” on page 84 for additional
information.
3

Chapter 1: Designer Series Overview
DT Analyze DT Analyze is an interactive timing tool used for timing verification
and for debugging timing problems. Timing information can be
displayed in a tabular or graphical format. A timing report generator is
also provided. DT Analyze is optional. Refer to “Timing Analysis using
DT Analyze” on page 95 for additional information.

ChipEdit ChipEdit is a graphical interface that allows designers to view a
design’s macro placement and to edit the placement of both I/O and
logic macros. Refer to “ChipEdit” on page 117 for additional
information.

Extract Extract exports the necessary delay information (back annotation) to
perform post-layout analysis with third-party CAE tools. Additional
information external to the Designer Series software may be required
for building complete analysis files. Refer to “Extracting Timing
Information” on page 87 for additional information.

Fuse Fuse generates the necessary files to program an Actel device. Fuse
supports both Actel and Data I/O formats. You do not need to run the
Fuse function if you are using APSW, unless you need to set a silicon
signature. Refer to “Generating a Programming File” on page 113 for
additional information.

Designer Script Designer supports a script language that allows designers to group
multiple design steps into a single operation. With Designer Script the
FPGA design flow can be automated, making design iterations a snap.
Refer to “Using Designer Script” on page 125 for additional
information.
4

Schematic-Based Design Methodology
Schematic-Based Design Methodology
If you prefer designing with schematic tools, Actel offers a complete
tool suite that lets you take your designs from concept to silicon. On
the front end, ACTgen integrates with third-party CAE tools for
schematic-entry and gate-level simulation. Once your design has been
created and verified, Designer completes the design with place and
route, timing analysis, and back annotation for timing verification.
Refer to “Schematic-Based Design Flow Illustrated” on page 7 for an
overview of the Designer Series schematic-based design flow.

HDL Synthesis-Based Design Methodology
If you prefer a high-level design methodology, the Designer Series
allows you to move from design description to a programmed part. To
get you through the design phase, Actel supports Verilog and VHDL
synthesis tools, as well as behavioral simulation. Once the design is
synthesized, ACTmap and Designer help you complete the design with
place and route, timing analysis, and timing verification. Refer to “HDL
Synthesis-Based Design Flow Illustrated” on page 10 for an overview
of the Designer Series synthesis-based design flow.
5

2
Actel Design Flows

The Designer Series integrates with third party schematic and HDL CAE
tools to implement, simulate, and program Actel devices. This chapter
illustrates and describes the design flows for creating Actel designs
using the Designer Series and third-party CAE software.

Schematic-Based Design Flow Illustrated
Figure 2-1 shows the schematic-based design flow for an Actel device
using Designer Series and third-party schematic capture software.1

1. Actel-specific utilities/tools are denoted by the grey boxes in Figure 2-1.

Figure 2-1. Actel Schematic-Based Design Flow

Silicon Explorer

Libraries
Actel

Data I/O

System General

Fuse
File

Actel
Device

BP Microsystems

SMS Sprint

Design Creation/Verification

Design Implementation

Programming

System Verification

Compile

Layout

DT Edit PinEdit

DT Analyze ChipEdit

ExportFuse

APS Software
Activator 2/2s Programmer

Silicon Sculptor

Functional/Timing
Simulator

Timing
File

Schematic Entry Tool

Structural
Netlist

ACTgen
Macro Builder

ACTmap
VHDL Synthesis

EDIF
Netlist

Silicon Expert
(Optional)
7

Chapter 2: Actel Design Flows
Schematic-Based Design Flow Overview
The Actel schematic-based design flow has four main steps; design
creation/verification, design implementation, programming, and
system verification. These steps are described in the following sections.

Third-party software users can also refer to the Actel Cadence Interface
Guide, Mentor Graphics Interface Guide, MOTIVE Static Timing
Analysis Interface Guide, Viewlogic Powerview Interface Guide, or
Viewlogic Workview Office Interface Guide for information about using
these tools with Actel software and devices.

Design
Creation/
Verification

During design creation/verification, a schematic representation of a
design is captured using third-party schematic capture software. After
design capture, a pre-layout (functional) simulation can be performed
with third-party simulation software. Finally, an EDIF netlist is
generated for use in Designer.

Schematic Capture

Enter your schematic using a third-party schematic capture tool. Refer
the documentation included with your schematic capture tool for
information.

Functional Simulation

Perform a functional simulation of your design using a third-party
simulation tool before generating an EDIF netlist for place and route.
Functional simulation verifies that the logic of the design is correct.
Unit delays are used for all gates during functional simulation. Refer to
the Actel Interface Guides and the documentation included with your
simulation tool for information about performing functional simulation.

EDIF Netlist Generation

After you have captured and verified your design, you must generate
an EDIF netlist for place and route in Designer. Refer to the Actel
Interface Guides and the documentation included with your schematic
capture tool for information about generating an EDIF netlist.
8

Schematic-Based Design Flow Overview
Design
Implementation

During design implementation, a design is placed and routed using
Designer. Additionally, static timing analysis can be performed on a
design in Designer with the DT Analyze tool. After place and route,
post-layout (timing) simulation is performed using third-party
simulation software.

Place and Route

Use Designer to place and route your design. Refer to “Design
Implementation Using Designer” on page 63 for information about
using Designer.

Static Timing Analysis

Use the DT Analyze tool in Designer to perform static timing analysis
on your design. Refer to “Timing Analysis using DT Analyze” on page
95 for information about using DT Analyze.

You can also perform static timing analysis using third-party static
timing analysis software. Refer to the documentation included with
your static timing analysis tool for information.

Timing Simulation

Perform a timing simulation of your design using a third-party
simulation tool after placing and routing it in Designer. Timing
simulation requires information extracted and back annotated from
Designer. Refer to the Actel Interface Guides and the documentation
included with simulation tool for information about performing timing
simulation.

Programming Program a device with programming software and hardware from Actel
or a supported third-party programming system. Refer to “Generating a
Programming File” on page 113 and the Activator and APS
Programming System Installation and User’s Guide or Silicon Sculptor
User’s Guide for information about programming an Actel device.

System
Verification

You can perform system verification on a programmed device using
the Actel Silicon Explorer diagnostic tool. Refer to the Activator and
APS Programming System Installation and User’s Guide or Silicon
Explorer Quick Start for information about using the Silicon Explorer.
9

Chapter 2: Actel Design Flows
HDL Synthesis-Based Design Flow Illustrated
Figure 2-2 shows the HDL synthesis based design flow for an Actel
device using Designer Series and third-party HDL synthesis software.1

1. Actel-specific utilities/tools are denoted by the grey boxes in Figure 2-2.

Design Creation/Verification

Silicon Explorer

Data I/O

System General

Fuse
File

Actel
Device

BP Microsystems

SMS Sprint

Design Implementation

Programming

System Verification

Compile

Layout

DT Edit PinEdit

DT Analyze ChipEdit

ExportFuse

Silicon Sculptor

APS Software
Activator 2/2s Programmer

Timing
File

Structural
HDL

Netlist

Library
Synthesis

EDIF
Netlist

3rd Party Synthesis
or

ACTmap

DCF
File

Simulation Tool
Behavioral/Structural/Timing

Simulation

Behavioral
HDL

Libraries

VITAL/VerilogACTgen
Macro Builder

Silicon Expert
(Optional)

Structural
Netlist

Figure 2-2. Actel HDL-Based Design Flow
10

HDL Synthesis-Based Design Flow Overview
HDL Synthesis-Based Design Flow Overview
The Actel HDL synthesis-based design flow has four main steps; design
creation/verification, design implementation, programming, and
system verification. These steps are described in the following sections.

Third-party software users can also refer to the Actel Cadence Interface
Guide, Mentor Graphics Interface Guide, MOTIVE Static Timing
Analysis Interface Guide, Synopsys Synthesis Methodology Guide, VHDL
Vital Simulation Guide, Verilog Simulation Guide, Viewlogic
Powerview Interface Guide, or Viewlogic Workview Office Interface
Guide for information about using these tools with Actel software and
devices.

Design
Creation/
Verification

During design creation/verification, a design is captured in an RTL-
level (behavioral) HDL source file. After capturing the design,
behavioral simulation of the HDL file can be performed with third-
party simulation software to verify that the HDL code is correct. The
code is then synthesized into a structural HDL netlist with ACTmap or
third-party synthesis software. After synthesis, structural simulation of
the design can be performed. Finally, an EDIF netlist is generated for
use in Designer and a structural HDL netlist is generated for structural
simulation with third-party simulation software.

HDL Design Source Entry

Enter your design source using a text editor or a context-sensitive HDL
editor. Your HDL design source can contain RTL-level constructs as
well as instantiations of structural elements, such as ACTgen macros.
Refer to the Actel HDL Coding Style Guide, ACTmap VHDL Synthesis
Methodology Guide or Synopsys Synthesis Methodology Guide for
additional information about writing HDL code for Actel designs.

Behavioral Simulation

Perform a behavioral simulation of your design before synthesis.
Behavioral simulation verifies the functionality of your HDL code.
Typically, unit delays are used and a standard HDL test bench can be
used to drive simulation. Refer to the Actel Interface Guides, the Actel
Simulation Guides, and the documentation included with your
simulation tool for information performing behavioral simulation.
11

Chapter 2: Actel Design Flows
Synthesis

After you have created your behavioral HDL source file, you must
synthesize it using ACTmap or a third-party synthesis tool before
placing and routing it in Designer. Synthesis transforms the behavioral
HDL file into a gate-level netlist and optimizes the design for a target
technology. Refer to “ACTmap VHDL Synthesis Tool” on page 51 or
the documentation included with your synthesis tool for information
for information about performing design synthesis.

EDIF Netlist Generation

After you have created, synthesized, and verified your design, you
must generate an EDIF netlist for place and route in Designer. This
EDIF netlist is also used to generate a structural HDL netlist. Refer to
the documentation included with your synthesis tool for information
about generating an EDIF netlist.

Structural HDL Netlist Generation

Generate a structural HDL netlist from your EDIF netlist for use in
structural and timing simulation by either exporting it from Designer or
by using the Actel “edn2vhdl” or “edn2vlog” program. Refer to the
documentation included with your synthesis tool for information about
generating a structural netlist.

Structural Simulation

Perform a structural simulation with a third-party simulation tool
before placing and routing it. Structural simulation verifies the
functionality of your post-synthesis structural HDL netlist. Unit delays
included in the compiled Actel libraries are used for every gate. Refer
to Refer to the Actel Interface Guides, the Actel Simulation Guides, and
the documentation included with your simulation tool for information
about performing structural simulation.

Design
Implementation

During design implementation, a design is placed and routed using
Designer. Additionally, static timing analysis can be performed on a
design in Designer with the DT Analyze tool. After place and route,
post-layout (timing) simulation is performed using third-party
simulation software.
12

HDL Synthesis-Based Design Flow Overview
Place and Route

Use Designer to place and route your design. Refer to “Design
Implementation Using Designer” on page 63 for information about
using Designer.

Static Timing Analysis

Use the DT Analyze tool in Designer to perform static timing analysis
on your design. Refer to “Timing Analysis using DT Analyze” on page
95 for information about using DT Analyze.

You can also perform static timing analysis using third-party static
timing analysis software. Refer to the documentation included with
your static timing analysis tool for information.

Timing Simulation

Perform a timing simulation of your design using a third-party
simulation tool after placing and routing it in Designer. Timing
simulation requires information extracted and back annotated from
Designer. Refer to the Actel Interface Guides, the Actel Simulation
Guides, and the documentation included with simulation tool for
information about performing timing simulation.

Programming Program a device with programming software and hardware from Actel
or a supported third-party programming system. Refer to “Generating a
Programming File” on page 113 and the Activator and APS
Programming System Installation and User’s Guide or Silicon Sculptor
User’s Guide for information on programming an Actel device.

System
Verification

You can perform system verification on a programmed device using
the Actel Silicon Explorer diagnostic tool. Refer to the Activator and
APS Programming System Installation and User’s Guide or Silicon
Explorer Quick Start for information about using the Silicon Explorer.
13

3
Design Considerations

This chapter contains information and procedures to assist you in
creating Actel designs.

Naming Conventions
This section lists schematic, Verilog, and VHDL naming conventions
that should be followed to avoid potential design flow problems.

Schematic Use only alphanumeric and underscore “_” characters for schematic
net and instance names. Do not use asterisks, forward slashes,
backward slashes, or spaces.

Verilog If simulation is to be completed using a Verilog simulator, it is
important to create schematics or write HDL code that complies with
the Verilog naming conventions. The following naming conventions
apply to Verilog HDL designs:

• Verilog is case sensitive.

• Two slashes “//” are used to begin single line comments. A slash and
asterisk “/*” are used to begin a multiple line comment and an
asterisk and slash “*/” are used to end a multiple line comment.

• Names can use alphanumeric characters, the underscore “_”
character, and the dollar “$” character.

• Names must begin with an alphabetic letter or the underscore.

• Spaces are not allowed within names.
15

Chapter 3: Design Considerations
Verilog Keywords

The following is a list of Verilog reserved keywords:

always endfunction macromodule realtime tran

and endmodule medium reg tranif0

assign endprimitive module release tranif1

attribute endspecify nand repeat tri

begin endtable negedge rnmos tri0

buf endtask nmos rpmos tri1

bufif0 event nor rtran triand

bufif1 for not rtranif0 trior

case force notif0 rtranif1 trireg

casex forever notif1 scalared unsigned

casez fork or signed vectored

cmos function output small wait

const highz0 parameter specify wand

deassign highz1 pmos specparam weak0

default if posedge strength weak1

defparam ifnone primitive strong0 while

disable initial pull0 strong1 wire

edge inout pull1 supply0 wor

else input pulldown supply1 xnor

end integer pullup table xor

endattribute join remos task

endcase large real time
16

Naming Conventions
VHDL If simulation is to be completed using a VHDL simulator, it is important
to create schematics or write HDL code that complies with the VHDL
naming conventions. The following naming conventions apply to
VHDL designs:

• VHDL is not case sensitive.

• Two dashes “--” are used to begin comment lines.

• Names can use alphanumeric characters and the underscore “_”
character.

• Names must begin with an alphabetic letter.

• Do not use two underscores in a row, or use an underscore as the
last character in the name.

• Spaces are not allowed within names.

• Object names must be unique. For example, you cannot have a
signal named A and a bus named A(7 downto 0).
17

Chapter 3: Design Considerations
VHDL Keywords

The following is a list of the VHDL reserved keywords:

abs downto library postponed subtype

access else linkage procedure then

after elsif literal process to

alias end loop pure transport

all entity map range type

and exit mod record unaffected

architecture file nand register units

array for new reject until

assert function next rem use

attribute generate nor report variable

begin generic not return wait

block group null rol when

body guarded of ror while

buffer if on select with

bus impure open severity xnor

case in or shared xor

component inertial others signal

configuration inout out sla

constant is package sra

disconnect label port srl
18

Hierarchical Designs
Hierarchical Designs
Multiple-level or hierarchical designs are created by creating symbolic
representations of blocks and adding them to other levels. The
Designer software reads and writes hierarchical netlists.

Multiple Sheet Designs
The Designer software supports multiple sheet designs. Each sheet in
the design is considered as part of a schematic, and it is not considered
as a level of hierarchy. Most schematic capture tools have page
connectors to connect the sheets. Refer to the documentation provided
with your schematic capture tool for additional information.

Actel Libraries
Actel provides libraries to support schematic- and synthesis-based
designs. Logic can be described in behavioral languages (VHDL or
Verilog). Structured logic such as counters, adders, and comparators
can be automatically built using the ACTgen Macro Builder. Functions
can be exclusively behavioral, schematic, or a combination of the two.
Timing definition is supported by the DT timing driven layout tools.
I/O definitions can be described in the design source or in Designer.

Adding Power and Ground
Actel provides special VCC and GND macros to connect nets to power
and ground. Add the VCC and GND macros to your design and
connect them by nets to the functional logic making up the design. It is
important to use the symbols provided by Actel in order to prevent
design flow issues. Do not add power and ground to designs by
naming nets or adding third-party power and ground symbols. Refer to
the Actel Interface Guides for information about adding power and
ground to your design.
19

Chapter 3: Design Considerations
Adding a Global Network
The Actel architecture provides global networks that allow high fan out
drive for flip-flops and latches with minimal skew. The available global
networks are shown in Table 3-1.

Table 3-1. Global Network Attributes

Input
Pad

Name
Type Family #

Internal
Drive

Option
Macro Note

CLK routed
ACT 1
40MX

1
Yes
(CLKBIBUF
only)

CLKBUF
CLKBIBUF

Can adjust skew
with clock bal-
ancing

CLKA
CLKB

routed

ACT 2
1200XL
ACT 3
3200DX
42MX
54SX

2 Yes

CLKBIBUF
CLKBUF
CLKINTa

CLKBUFIb

CLKINTIb

a. The Internal Drive Option for ACT 2, 1200XL, ACT 3, 3200DX, 42MX, and
54SX can only be utilized by selecting the CLKINT macro to drive an internal
clock network.

b. 54SX only.

Can connect to
CLK and G pins

HCLK dedicated
ACT 3
54SX

1 No HCLKBUF
Directly hard-
wired to certain
S-modules

IOCLK dedicated ACT 3 1 No IOCLKBUF
Connected to all
I/O modules

IOPCL special ACT 3 1 No IOPCLBUF
Connected to
I/O module set
and reset pins

QCLK
A-D

routed
3200DX
42MX

4 Yes
QCLKBUF,
QCLKINT

Each QCLK drives
a quadrant of the
device
20

Adding a Global Network
Routed Clocks Routed clocks are clock networks with unlimited fan-out and offer
clock speeds independent of the number of logic modules being
driven. Routed clocks can also be used as RESET and PRESET
networks to drive the reset and preset pins of internal logic modules.
They can be connected to most logic module inputs.

CLK, CLKA, CLKB

CLK, CLKA, and CLKB are routed global clocks that can be used by
selecting the CLKBUF, CLKBIBUF, CLKBIBUFI, CLKINT, or CLKINTI
macro.

QCLK

QCLK (available on 42MX and 3200DX devices) is a routed quadrant or
global clock that can drive from one to four quadrants on a device. In
addition to global RESET and PRESET networks, QCLK can be used as
a quadrant RESET and PRESET network. QCLK can be used by
selecting the QCLK or QCLKINT macro.

Dedicated
Clocks

Dedicated clocks are clock networks that are directly wired to sequential
and I/O modules. They contain no programming elements in the path
from the I/O pad driver to the input of sequential or I/O modules. These
clocks provide sub-nanosecond skew and guaranteed performance.

HCLK

HCLK is a dedicated hard-wired clock input for sequential modules.
HCLK is directly wired to each sequential module and offers clock
speeds independent of the number of sequential modules being
driven. HCLK can be used by selecting the HCLKBUF macro. Table 3-2
lists the ACT 3 sequential elements and Table 3-3 lists the 54SX
sequential elements that cannot be connected to HCKLBUF because
they are built from combinatorial modules:

Table 3-2. ACT 3 Elements that Cannot Connect to HCKLBUF

DFP1 DFP1B DFP1D DFPCA DFPC DLC1

DLC1A DLC1F DLC1G DLE2C DLE3B DLE3C

DLP2C DLP1A DLP1B DLP1C DFP1A
21

Chapter 3: Design Considerations
IOCLK

IOCLK is a dedicated hard-wired clock input for I/O modules. IOCLK
is directly wired to each I/O module and offers speeds independent of
the number of I/O modules being driven. IOCLK can be used by
selecting the IOCLKBUF macro.

Special Clocks Special clocks are special hard-wired networks for I/O modules that
can only drive preset/clear pins of I/O modules. IOPCL, the only
special clock, is a special network directly wired to the preset and clear
inputs of all I/O registers. IOPCL functions as an I/O when no I/O
preset or clear macros are used. IOPCL can be used by selecting the
IOPCLBUF macro.

Combinability
The functionality of some combinations of gates and flip-flops can be
combined to fit into a single logic module instead of a logic module to
implement each gate or flip-flop. This ability is called combinability.
Designer has an automatic utility called the Combiner to perform this
function, as well as to reduce the logic in other ways.

The Combiner reduces the number of logic modules, logic levels, and
fan-ins in a design by remapping, removing, and combining certain
hard macros, including the deletion of buffers on clock networks. It
also simplifies a design netlist using features of the Actel architecture.

The Combiner is integrated into the Compile function in Designer. It
improves the density, speed, and routability of a design by performing
the following functions, which are described in the following sections:

• Combinatorial Module Reduction
• Sequential Remapping
• Unused Logic Removal
• Constant Input Reduction
• Fan-in Reduction

Table 3-3. 54SX Elements that Cannot Connect to HCKLBUF

DLC1 DLC1A DLC1F DLC1G DLE2C DLE3B

DLE3C DLP2C DLP1A DLP1B DLP1C DFP1A
22

Combinability
Combinatorial
Module
Reduction

Combinatorial Module Reduction reduces the number of combinatorial
modules and logic levels, giving a design more density and speed. It
does this in one of the following two ways:

1. It combines two or more combinatorial macros into a single macro.
For example, two 2-input AND gates, two inverters, and three
inverters are combined into a single 3-input AND gate, a buffer, and
an inverter respectively, shown in Figure 3-1.

2. It combines a combinatorial macro and a sequential macro into a
single sequential macro. For example, a combinatorial macro
“MUX” and a sequential macro “DF1” are combined into a single
sequential macro “DFM,” shown in Figure 3-2. Combinatorial
Module Reduction is not available for ACT 1 or 40MX devices
because these families do not have sequential modules. Module
Reduction is not available for 54SX devices. Instead, an automatic
DirectConnect between a combinatorial module and a sequential
module is used.

Becomes

Becomes

Becomes

Figure 3-1. Combined Combinatorial Macros

MUX
DF1

A

B

clk

B

clk

A

S DFMBecomes

S

Figure 3-2. Combined Combinatorial and Sequential Macros
23

Chapter 3: Design Considerations
Sequential
Remapping

Sequential Remapping attempts to achieve better results in the density,
speed and routability of a design. If Sequential Remapping cannot
reduce the total number of combinatorial macros in the design, the
Combiner does not use it. Sequential Remapping is not available for
ACT 1 or 40MX devices because these families do not have sequential
modules. Sequential Remapping is not available for 54SX devices
because the sequential modules in 54SX do not have a combinatorial
component. Instead, optimal performance is achieved by an automatic
DirectConnect between a combinatorial module and a sequential
module whenever possible. Sequential Remapping performs the
following three steps in order:

1. It divides complex sequential library macros into basic
combinatorial and sequential macros. For example, a D-type flip-
flop with 2-input multiplexed data “DFM” remaps into a 2 to 1
multiplexor “MX2” and a D-type flip-flop “DF1.” The total number
of logic modules has temporarily increased from one combinatorial
and one sequential module to two combinatorial and one
sequential module, shown in Figure 3-3.

MX2 DF1

A

B

clk

B

clk

A

S

DFM

X
Y
Z

X

Y

Z

S
D Q

Becomes

INV INV

Figure 3-3. Complex Macros Divided
24

Combinability
2. It implements the new combinatorial macro by combining the basic
combinatorial macro from step 1 with its previous combinatorial
macro in a design. For example, “MX2” and an inverter “INV” are
combined into “MX2A.” The total number of logic modules is
decreased to one combinatorial and one sequential module, shown
in Figure 3-4.

3. It combines the new combinatorial macro from step 2 with the basic
sequential macro from step 1. For example, “MX2A” and “DF1” are
combined into a D type flip-flop with 4 input multiplexed data,
active low clear, and active high clock “DFM6A.” The total number
of logic modules is further decreased to one sequential module,
shown in Figure 3-5.

MX2 DF1

A

B

clk

X

Y

Z

S
D Q

Becomes

MX2A DF1

A

B

clk

X

Y

Z

S
D Q

INV

Figure 3-4. Logic Modules Decreased

Becomes

MX2A

DF1

A

B

clk

X

Y

Z

S
D Q

clk
S1

DFM6A

Z

Q

VDD

CLR
clk

S0

D3

D0
D1
D2

VDD
GND

Y

X

Figure 3-5. Logic Reduced to One Sequential Module
25

Chapter 3: Design Considerations
Unused Logic
Removal

Unused Logic Removal removes all logic macros that are not driving
any other logic macro input or do not propagate to an output pad. The
removal of such macros does not affect the functionality of the circuit.
An example of Unused Logic Removal is shown in Figure 3-6.

Constant Input
Reduction

Every Actel hard macro can be mapped or configured in many
different ways to implement logic functions. However, when macro
inputs are tied to power or ground, the number of configurations
available to the place and route software is decreased. Constant Input
Reduction reconfigures macros that have unused inputs connected to
power or ground into logically equivalent functions with the power or
ground connections eliminated. Constant Input Reduction only
reconfigures combinatorial macros. Sequential macros that have inputs
connected to power or ground are not affected. Figure 3-7 illustrates
how Constant Input Reduction is achieved.

Becomes

CLK

D Q

CLK

D Q

Figure 3-6. Unused Logic Removal

Becomes

Figure 3-7. Constant Input Reduction
26

Combinability
Fan-in
Reduction

Fan-in Reduction reduces the number of inputs of a combinatorial
macro that has inputs tied together by mapping it to a logically
equivalent macro with fewer inputs. This function substantially
improves the routability of a design. Fan-in Reduction does not reduce
the number of logic modules and only reconfigures combinatorial
macros. Sequential macros that have inputs tied together are not
affected. Figure 3-8 illustrates how Fan-in Reduction is done.

Back
Annotation
Effects

The Combiner does not change the functionality of a design. Rather, it
improves the density, speed and routability of a design. Changes
resulting from logic removal or combining are not visually back
annotated to the schematic, but the timing is adjusted accordingly. The
removal or combining of logic does not adversely affect either back
annotation to a simulator or timing analysis performed by DT Analyze.

There are slight differences in the way delays are back annotated to a
simulator and how they are viewed in DT Analyze. Figure 3-9 shows
how delays are viewed in schematics before combining.

Becomes

Figure 3-8. Fan-in Reduction

AND2 DF1

6.4 ns

5.2 ns

INBUF

11.6 ns

Figure 3-9. Delays Before Combining
27

Chapter 3: Design Considerations
A delay of 11.6ns (=6.4+5.2) represents the macro delay of “INBUF”
and the wire delay between “INBUF” and “AND2” (6.4ns) plus the
macro delay of “AND2” and the wire delay between “AND2” and “DF1”
(5.2ns).

When “AND2” is combined with “DF1,” the macro delay of “AND2”
and the wire delay between “AND2” and “DF1” (5.2ns) no longer
exists. However, “AND2” still exists on the schematic. Therefore, for
back annotation purposes, Designer back annotates a delay of 0.0ns
for the macro delay of “AND2” and the wire delay between “AND2”
and “DF1.” DT Analyze also shows a 0.0ns delay for the macro delay of
“AND2” and the wire delay between “AND2” and “DF1.” The resulting
delay is 6.4ns (=6.4+0.0) instead of 11.6ns (=6.4+5.2) because of the
zero delay for the macro delay of “AND2” and the wire delay between
“AND2” to “DF1.” Figure 3-10 illustrates this process.

Combinability
with ACT 1 and
40MX Devices

The ACT 1 and 40MX architectures do not use sequential modules to
implement flip-flops and latches. Therefore, combinatorial macros with
flip-flops and latches cannot be combined. However, DFM type flip-
flops with their inputs tied to GND and/or VCC can be used to
implement a logic function with fewer modules and shorter
propagation delay. Figure 3-11 illustrates how to tie the “A,” “B,” and
“Select” inputs to implement a given gate/flip-flop combination in ACT
1 or 40MX using one “DFM.” This lowers the module count and the
propagation delay.

AND2 DF1

6.4 ns

INBUF

0 ns

6.4 ns

Figure 3-10. Delays After Combining
28

Combinability
D Q

D Q

D Q

D Q

DF1

AND2

AND2A

OR2A

GND

VCC

GND

DFM

A
B
S

OR2

DF1

DF1

DF1

Q

DFM

A
B
S

Q

DFM

A
B
S

Q

DFM

A
B
S

Q
VCC

A
B

B

A

A

B

B
A

Require 3 Require only 2

A
B

A
B

A
B

A
B

logic moduleslogic modules

Figure 3-11. DFM Ties-Offs to Reduce Logic Module Count
29

Chapter 3: Design Considerations
Net Loading
High fan out degrades performance and increases the potential of
unrouted nets. Designer does not permit fan-outs greater than 24. In
addition, the software warns you if any nets have an excess of 10
loads. If these nets are not speed-critical and there are a modest
number of them, you can ignore these warnings. However, if critical
nets in the design have a fan-out greater than 10, you should modify
them by buffering, as shown in Figure 3-12.

An alternative method to buffering is duplicating logic to eliminate the
buffer delay, shown in Figure 3-13.

Both buffering and duplicating logic cost additional logic modules.
You can use buffering if you do not care about the skew or if you want
to minimize the amount of logic resources used, because buffering
generally takes less logic than logic duplication. However, Actel
recommends that you duplicate logic to reduce fan-out because it does
not add an additional delay in the form of a buffer and it reduces
skew.

Figure 3-12. Buffering

FO=18 FO=9FO=10

FO=18 FO=9

FO=9

Figure 3-13. Duplicating Logic
30

Logic and I/O Utilization
Logic and I/O Utilization
The Designer software calculates the logic module and I/O module
utilization. You can view module utilization by generating a Status
report.

Calculate the logic module and I/O module utilization as follows:

For example, an ACT 2 A1240 design using 600 logic modules and 93
I/O modules would have the following module utilization:

To improve the chances of optimal routing, Actel recommends that the
total logic module utilization be between 50% and 85%.

• Lower utilization, especially with high I/O usage, causes excessively
long delays and, possibly, unrouted nets.

• High utilization should be avoided if there is significant use of high
pin count macros (for example, “MX4” and “DFM6A”).

If the design requires additional resources, you can use a larger device
by changing the device and package selection within Designer. The
specialized I/O macros take advantage of architectural enhancements
with the later families. Use these macros to improve performance.

Refer to the Actel FPGA Data Book and Design Guide and Macro
Library Guide for additional information.

Module Utilization = Number of Modules Used X 100
Number of Modules Available

Logic Module Utilization = 600 X 100 = 87.7%
684

I/O Module Utilization = 93 x 100 = 89.4%
104
31

Chapter 3: Design Considerations
Adding Properties
This section describes how to add properties to your designs.

ALSPRESERVE When Designer compiles a design, one of the functions of the
Combiner is to combine (optimize) combinatorial functions into
sequential macros whenever possible. Combining logic does not affect
the functionality of the circuit. To prevent such combining, an
“ASLPRESERVE” property may be added to the net connecting the
macros that would otherwise be combined, as shown in Figure 3-14.
The “ALSPRESERVE” property does not need to have a value assigned
to it. Most schematic capture tools pass the property to the netlist.
Refer to the documentation provided with your schematic capture tools
for information about adding properties to nets.

Example EDIF netlist:

(net N4 (joined (portRef Y (instanceRefU2))
(portRef D (instanceRef U3)))

(property ALSPRESERVE (boolean (true))))

Adding Input and Output Pins to the Design
Actel provides special input, output, tri-state, and bi-directional macros
for adding I/Os to your design. Add the I/O macros to your design and
connect them by nets to both port symbols, and the functional logic

Figure 3-14. Adding ALSPRESERVE Property to a Net

N4

U3

Add ALSPRESERVE
property to this net

U2
32

Adding Input and Output Pins to the Design
making up the design. Most third-party CAE tools have special symbols
to represent the ports. Refer to the Actel Interface Guides for
information about adding I/Os to your design.

Typically, pin assignments are made within Designer using PinEdit.
However, many third-party CAE tools allow users to enter pin
assignments directly into the design. The ASLPIN property may be
added to the net connecting a port to an I/O buffer, shown in Figure 3-
15. Assign the corresponding pin number as the value of the property.
Most schematic capture tools pass the property to the netlist. Refer to
the documentation provided with your schematic capture tools for
more information about adding pin assignments.

Example EDIF netlist:

(net N5 (joined (portRef PAD (instanceRefU3))
(portRef Y(instanceRef U3)))

(property ALSPIN (string “B2”))
(property ALSFIX (boolean (true))))))))

Selecting I/O
Placements

The design flow for Actel FPGAs allows the following different
methods of selecting I/O placements:

Automatic pin assignment. No manual assignment is made for an
I/O signal. After you compile the design, run Layout and Designer
automatically selects the best pin location depending on characteristics
of the design, such as timing constraints, device type and package, and
overall design topology.

Manual pin assignment. Manual pin assignments allow maximum
control over the design flow, since the I/O assignments remain fixed
regardless of design changes. You can use any of the following three

Add ALSPIN property
to this net.

PORT Pad

INBUF

Y

Figure 3-15. Adding ALSPIN Property to a Net
33

Chapter 3: Design Considerations
methods to perform manual pin assignment, but Actel recommends
that you use only one method.

• Use PinEdit: Refer to “PinEdit” on page 81 for information about
using PinEdit for manual pin assignment.

• Assign pins from within the design schematic: Designer allows
you to assign and fix pins to I/O signals in your design schematic.
For more information on how to assign pins from within the design
schematic, refer to the Actel Interface Guides. You cannot back
annotate pin assignments from Designer to your design schematic.

• Import the <design>.pin file into Designer: Designer can import
pin files to assign pins. Refer to “Importing (DCF), (PIN), and (CRT)
Information” on page 70 for more information on how to import a
file into Designer.

How you use the three methods above depends on the requirements
of the project. You can get the final pin assignment by generating a pin
report and/or printing the graphical view of the device pin assignment
in PinEdit.

Suggested I/O
Assignment
Method

Because both methods (automatic or manual) of determining I/O pin
assignments for Actel devices can be used in combination, there are
many methods to create quality pin placements. The best method for a
design depends on factors such as scheduling constraints, design
changes, and performance specifications.

To design effectively, use automatic pin assignment for 100% of the
I/O signals. Designer optimizes the placement and routing, especially
if it is given the flexibility of automatically assigning all I/O
placements. Designer selects, evaluates, and optimizes many different
I/O configurations specific to the device architecture. If as few as 10%
of the pin assignments are inefficiently assigned manually, the quality
of the placement and routing could be compromised. Fixed manual
assignments should be kept to a minimum.
34

Adding Input and Output Pins to the Design
Fast I/O
Assignment
Procedure

The I/O assignment process does not have to be a gating item to the
overall system schedule. The optimal design flow would allow the
software to reposition the I/O every design iteration. However, as long
as I/O assignments change, PCB layout cannot take place, and the
board may take several weeks to manufacture. To save time, as long as
the number and function of the I/Os are finalized, use the following
procedure to have Designer automatically assign all of the pins before
the details of the design are completed and before the design is
completely tested and debugged.

1. Enter the design as completely as possible, ignoring small
details to be modified later. It is important to include all of the
major functions that will be in the FPGA circuit. The objective is to
obtain a netlist that approximates the final design topology. The
circuit does not need to be functionally correct at this point but
must have the same major functional blocks (adders, counters, and
so on) and approximately the same number of logic modules as the
final design.

2. Layout the design in Designer. Ignore any warnings from the
Compile program that may be due to the unfinished state of the
design. Run Layout in standard mode with incremental placement
turned off.

At this point, Layout has automatically assigned I/Os according to
the design topology. This is done before all of the functional bugs
have been discovered and resolved. Minor functional changes that
may be made to the design will have little effect on the quality and
effectiveness of the pin placements.

3. Layout the PCB. Complete the PCB layout knowing that the pin
assignments for the Actel device will not require modifications in
the future.

Layout does not modify any I/O placements that have been fixed.
This method can be used even if the I/Os are manually assigned.
The results of automatic I/O assignment by Layout can be used as
a template for manual I/O assignment. The automatic placements
can be used as a guide and small modifications can be made as
required.
35

Chapter 3: Design Considerations
Assigning I/Os
Manually

If any or all of the I/O placements must be assigned manually, a
broader knowledge of Actel FPGA architecture is required. Refer to the
Actel FPGA Data Book for information about different architectures of
the Actel families. The structure of the logic and I/O modules, routing
tracks, antifuses, and other architectural details are discussed. This
information can be used to assign I/O signals manually with the
specific details of the device in mind.

During the process of assigning I/Os for the device, the following
guidelines can help to increase routability and performance:

• Try to force signal paths, especially large data buses, to flow
horizontally across the die, since there are more horizontal than
vertical routing resources. In most cases, a large data bus requires
many interconnections as it traverses the circuit.

The greater number of horizontal routing tracks handles these
interconnections to reduce routing congestion. The horizontal and
vertical orientation of the die is the same as shown in the package
pin assignment and mechanical detail drawings in the Actel FPGA
Data Book.

• Count the number of levels of logic between I/Os to determine
placement. For example, I/Os that are separated by one gate should
be placed closer than I/Os that are separated by a long shift register.
In general, the Actel device architecture allows signals to be routed
across two vertical rows and over one-third of the columns of the
device without using a long routing track. For example, an A1225
device that has 13 rows and 46 columns. Two I/O signals should not
be placed on opposite sides of the device unless there are at least
two horizontal or three vertical levels of logic between them.

• Use the top and bottom I/O pins for slow and/or local signals. The
fact that there are fewer vertical routing resources should not harm
the performance of these signals.

• Use the global clock buffers. Each of these pins is connected to a
dedicated, low-skew distribution network that is optimized for high
fan-out signals.
36

Adding Input and Output Pins to the Design
Unused I/O Pins Every I/O bond pad on the die is connected to a multipurpose circuit
capable of becoming an input, output, or tri-state I/O. The circuit is
always connected to the bond pad, and Designer configures it
according to the design’s specification.

If a package pin on a device is not used, Designer assigns the I/O
circuitry as an output, with its input held to a logic low. Thus, the
output is also a logic low. If the PCB design has a track connected to
this unused pin, that track is held to a logic low. Figure 3-16 illustrates
how the system configures an unused package pin.

If you want to tri-state unused I/O pins, use a TRIBUFF macro, as
shown in Figure 3-17. The D and E inputs of a TRIBUFF are connected
to GND. Therefore, the PAD output goes tri-state and does not load
any external paths.

Using Probe
Pins as I/O Pins

Layout automatically avoids using the probe pins “PRA,” “PRB,” “SDI,”
and “DCLK” unless you have fixed pin assignments to one or more of
these pins, or the number of pins in the design exceeds the number of
non-probe I/O pins. The number of non-probe I/O pins for a device is
the total number of I/O pins available minus 4. The function of the
probe pins depends on the Mode Pin and Security Fuse Programming.

D
E

Y

BIBUF PAD

Vcc

Figure 3-16. System Configuration for Unused Pins

D
E

TRIBUFF PAD

Figure 3-17. Tri-Stating Unused Pins
37

Chapter 3: Design Considerations
Using JTAG Pins
as I/O Pins for
3200DX, 42MX
and 54SX only

The high-capacity devices of the 3200DX, 42MX, and 54SX families
have four JTAG pins: “TDI,” “TMS,” “TCK” and “TDO.” Layout
automatically avoids using these pins as I/O pins. If you are not using
the JTAG function, you can use these pins as I/O pins. The function of
the JTAG pins depends on the J-fuse programming.

Generating a Top-Level Symbol
You can create a top-level symbol for the entire design. The pin names
on the symbol must match the underlying port names. The top-level
symbol must only contain pins for I/O buffers. Do not add power,
ground, “PRA,” “PRB,” “SDI,” “DCLK,” or other special pins to the
symbol. Doing so causes errors during netlist generation. Remember to
update the symbol if pins change on the schematic.

Entering Constraints for Timing Driven Place and Route
Unique timing constraints for each signal path in a design can be
specified using DT Edit. It may only be necessary to specify the clock
frequency for synchronous designs. The DirectTime mode typically
eliminates time-consuming iterations of the design flow. Timing
constraints can also be specified in a design constraint file (DCF) and
imported into Designer. Refer to “DT Edit” on page 76 for information
about specifying timing constraints in DT Edit, and “Importing (DCF),
(PIN), and (CRT) Information” on page 70 for information about
importing a DCF file.

Estimating Pre-Layout Timing
It is often necessary to estimate the timing of a design to be
implemented prior to using the design tools. With some knowledge of
the critical path, you can perform this analysis using the timing
information in the Actel FPGA Data Book.

Figure 3-18 illustrates the procedure using an ACT 2 A1225XL-1 design
example with a critical path from the CLK pad to the OUT pad. The
38

Adding ACTgen Macros
delays used come from the timing tables for the A1225XL-1 in the Actel
FPGA Data Book. These values include a statistical net delay which is
associated with each macro output. The OUTBUF macro assumes a
load of 35 pF. The analysis is based on worst case commercial
conditions.

Note: The “NOR4” macro has a significantly higher delay because it is
a two-module macro.

Adding ACTgen Macros
With the ACTgen Macro Builder, you can create macros using a simple
graphical interface. For many schematic capture tools, a symbol and
netlist description of the macro can be created directly from ACTgen.
Other tools require a separate utility that uses third-party netlist readers
to create a symbol and netlist description. Once the ACTgen symbol
has been added to a schematic, the macro is added to the design’s
netlist during netlisting. Refer to “Generating Macros Using ACTgen”
on page 41 for information about using the ACTgen Macro Builder.

Figure 3-18. Critical Path Timing Example

D Q

DF1CLKBUF

INBUF
AIN

CLK

Fan-out=32

tCKH
tCO tPD1 2 * tPD1

AND3

NOR4

2 OUTBUF OUT

tDHL

CLKBUF DF1 AND3 NOR4 OUTBUF

Use dual module delay

tRD3 tRD4 tRD1

tCRT(CLK to OUT) = tCKH(CLKBUF)+tCO(DF1)+tRD3+tPD1(AND3)+tRD4+2 * tPD1(NOR4)+tRD1+tDHL(OUTBUF)

= 5.8 + 3.0 + 1.8 + 3.0 + 2.3 + 2 * 3.0 + 0.9 + 4.6

= 27.4ns

Fan-out=3 Fan-out=4
39

4
Generating Macros Using ACTgen

This chapter describes how to use the ACTgen Macro Builder,
including information about generating new macros, modifying
existing macros, using the Fan-In Control tool, and generating macro
reports. Refer to the Actel Interface Guides for information about
adding ACTgen macros to designs created with those CAE tools.

ACTgen Features
The ACTgen Macro Builder contains the following features:

Generate New
Macros

ACTgen can generate datapath macros that can be inserted as symbols
into schematic designs or instantiated into synthesis-based designs.

Modify Existing
Macros

If you have previously generated an ACTgen macro for a design,
ACTgen can modify this macro, changing the family or variations as
desired.

Create HDL
Behavioral
Models

If you are using an HDL synthesis-based design flow, ACTgen can
create VHDL or Verilog behavioral models of macros for use in
behavioral simulation prior to synthesis. Once the model has been
simulated, you can then instantiate the macro into your design.

Fan-In Control If you need to control the buffering of clocks, asynchronous presets
and clears, and other control signals in a macro, you can use the fan-in
control tool to specify the type of buffering to use.

Macro Reports ACTgen stores information about a macro as it generates the macro.
You can save and print this information when you generate the macro.
41

Chapter 4: Generating Macros Using ACTgen
ACTgen Main Window
When you invoke ACTgen, the main window, shown in Figure 4-1, is
displayed. From this window, the target family of Actel FPGA, macro
type to generate, and the variations of that macro are selected.

Figure 4-1. ACTgen Main Window
42

Generating New Macros
Generating New Macros
Use the following procedure to generate a new macro with ACTgen.

1. Invoke ACTgen.

PC

Select ACTgen Macro Builder from the Designer menu under
Programs in the Start menu.

UNIX

Type the following command at the prompt:

actgen

The ACTgen Main window, shown in Figure 4-1, is displayed.

2. Specify the Family. Select the family of the Actel device the macro
is to be used for in the Family pull-down menu.

3. Select the macro type to generate. Click one of the macro type
buttons, specifying Arithmetic, Comparators, Counters, Register,
RAM, FIFO, Logic, Decoder, Multiplexer, or I/Os.

4. Specify the specific macro type. Each type of macro may have
several specific types available in the pull down menu above the
Variations area.

5. Set macro variations. The Variations area displays options that are
available for the specific Macro type.

6. (Optional) Set Fan-in Control. If you wish to alter fan-in for
control signals, specify the specific macro type and set macro
variations first. Choose the Fan-in Control command from the
Options menu. The Fan-In Control dialog box, shown in Figure 4-
2, is displayed. Set the desired buffering type and value for each
signal. Refer to “Fan-in Control Tool” on page 46 for additional
information.

7. Generate the macro. Select the Generate command from the File
menu or click the Generate Macro Button on the toolbar. The
Generate Macro dialog box is displayed.
43

Chapter 4: Generating Macros Using ACTgen
8. Select the output format from the Netlist/CAE Formats menu.
Choose the appropriate output format.

Note: The Cadence (Concept), Mentor Graphics, or Viewlogic
format will not be in the Netlist/CAE Formats menu if these
libraries were not installed when Designer was installed.

9. (Optional) Generate a VHDL or Verilog behavioral model for
the macro. If your design is an HDL design and you want to
perform a behavioral simulation before synthesizing the design,
check the appropriate option check box to generate a behavioral
model for your macro.

Note: These options may not be available if the behavioral models
are not available for the given selection.

10. Enter the name of your macro. Type the path and name of your
design in the File Name Box or use the Browse button.

11. Click OK. The ACTgen Macro Builder generates the new macro
with the specified options and displays information about the
macro in the ACTgen Report window.

If you specified the netlist type as Viewlogic, Cadence, or Mentor
Graphics, in addition to generating the macro, the ACTgen Macro
Builder generates a symbol for the macro and displays the process
on screen.

12. (Optonal) Save your report. In the ACTgen Macro Builder, save
your report in *.log format by choosing Save As in the Reports
menu, or click the Save button on the toolbar. Name the file and
click OK.

Modifying Existing Macros
Use the following procedure to modify an existing macro.

1. Invoke ACTgen.

PC

Select ACTgen Macro Builder from the Designer menu under
Programs in the Start menu.
44

Modifying Existing Macros
UNIX

Type the following command at the prompt:

actgen

The ACTgen Main window, shown in Figure 4-1, is displayed.

2. Open the macro to modify. Choose the Open command from the
File menu. The Open Macro dialog box appears. Type the name of
the macro you want to open or use the Browse button.

3. Modify the macro. Change the family, macro type, specific macro
type, and Variations as desired.

4. (Optional) Set Fan-in Control. If you wish to alter fan-in for
control signals, specify the specific macro type and set macro
variations first. Choose the Fan-in Control command from the
Options menu. The Fan-In Control dialog box, shown in Figure 4-
2, is displayed. Set the desired buffering type and value for each
signal. Refer to “Fan-in Control Tool” on page 46 for additional
information.

5. Re-generate the macro. Select the Generate command from the
File menu. The Generate Macro dialog box is displayed.

6. Select the output format from the Netlist/CAE Formats menu.
Choose the appropriate output format.

Note: The Cadence (Concept), Mentor Graphics, or Viewlogic
format will not be in the Netlist/CAE Formats menu if these
libraries were not installed when Designer was installed.

7. (Optional) Generate a VHDL or Verilog behavioral model for
the macro. If your design is an HDL design and you want to
perform a behavioral simulation before synthesizing the design,
check the appropriate option check box to generate a behavioral
model for your macro.

Note: These options may not be available if the behavioral models
are not available for the given selection.

8. Enter the name of your macro. Type the path and name of your
design in the File Name Box or use the Browse button.
45

Chapter 4: Generating Macros Using ACTgen
9. Click OK. The ACTgen Macro Builder generates the new macro
with the specified options and displays information about the
macro in the ACTgen Report window.

If you specified the netlist type as Viewlogic, Cadence, or Mentor
Graphics, in addition to generating the macro, the ACTgen Macro
Builder generates a symbol for the macro and displays the process
on screen.

10. (Optional) Save your report. In the ACTgen Macro Builder, save
your report in *.log format by choosing Save As in the Reports
menu, or click the Save button on the toolbar. Name the file and
click OK.

Fan-in Control Tool
The Fan-in Control tool gives advanced users the ability to control the
buffering of clocks, asynchronous presets and clears, and other control
signals. This tool is optional because default buffering values are
provided for all signals. The tool supports two types of buffering
control, automatic and no buffering, which provide maximum
buffering flexibility.

Automatic
Buffering

Automatic buffering automatically inserts buffers as required, and
provides ease of use for fanning out heavily loaded signals. Automatic
buffering is the default buffering type for most signals. ACTgen
automatically inserts buffers/inverters for this option and provides a
single input for the signal. The value defined for automatic buffering
indicates the maximum loading on the network for the given control
signal. ACTgen also balances the loading as required. Automatic
buffering can indirectly define input loading to a macro.

No Buffering No buffering restricts ACTgen from inserting buffers. This allows
designers to manually use global clock resources for control signals.
This also provides the ability to enhance performance of control
signals by performing a logic function and correcting for fan-in by
duplicating logic external to the macro.
46

Fan-in Control Tool
Fan-in Control
Tool Guidelines

The Fan-in Control tool has the following limitations.

• The Fan-in Control tool has been designed to be a slave to the
primary macro definition screen. Therefore, you should define
exceptions to default values only after you have made all primary
screen selections. Changing the main screen may affect the defined
fan-in values. Information on modified fan-in will be provided in the
Report window and should always be verified for correctness.

• The ability to perform no buffering on some control signals is limited
to a single polarity because of hardware limitations. For example,
ACT 2, 1200XL, ACT 3, 3200DX, 42MX, and 54SX limit asynchronous
clears to Active Low only. Choosing Active High for this signal causes
the No Buffering option to be unavailable. When this situation
occurs, go back to the primary screen and change the active level for
the given signal if no buffering is a must.

• Some control signals, such as the Count Enable signal are not
included in the Fan-in Control tool because fan-out is corrected
internally using AND and OR logic functions.

Using Fan-In
Control

The Fan-in Control dialog box, shown in Figure 4-2, consists of three
information/control columns. The first column defines the signal name.
The second column specifies automatic or no buffering for the signal.
The third column displays assigned buffering values where the actual
value is entered. The description for this column changes depending
47

Chapter 4: Generating Macros Using ACTgen
on the type of buffering selected. A signal width value of one (1)
causes all loads to be driven by a single input.

Generating a Macro Report
As ACTgen generates a macro it writes information to the ACTgen
Report window. The report contains information defining the macro,
and is divided into the following sections:

• Macro Parameter. This section lists the options selected to build the
macro.

• Fan-in Control Information. This section defines the type of
buffering for each control signal and the values used to distribute the
total load.

• Compile Report. This section describes the number of sequential
(flip-flop) resources, the total number of logic modules, and any I/O
resources.

• Timer Report. This section describes the maximum delay from
input I/O to output I/O, maximum delay from input I/O to internal

Figure 4-2. Fan-in Control Dialog Box
48

Generating a Macro Report
registers, maximum delay from internal registers to output I/O, and
maximum delays for each clock network.

• Output Format Information. This section contains information
specific to the selected output format. It shows the path for the
“viewdraw.ini” file if Viewlogic is selected, or the path for the output
netlist file.

To generate a .log file:

1. Select Save As from the Reports menu or the toolbar. The Save
As dialog box is displayed.

2. Enter the name of your report. Type the path and name of your
report in the File Name Box.

3. Click OK. The ACTgen Macro Builder generates the .log file. An
example .log file is shown in Figure 4-3.

To print a .log file:

1. Select Print from the Reports menu. The report is queued to
your local printer.

2. Click OK.

To disable/enable reports:

1. Select Disable from the Reports menu. This turns off the
Compile and Timing reports, which provides the user with much
faster macro Generation Capability.

2. Select Enable from the Reports. This turns the Timing and
Compile reports on again.
49

Chapter 4: Generating Macros Using ACTgen
Figure 4-3. ACTgen .log File
50

5
ACTmap VHDL Synthesis Tool

This chapter describes how to use the ACTmap VHDL synthesis tool to
synthesize VHDL designs and optimize netlists for Actel devices. This
includes information about implementing a hierarchical project and
generating a netlist suitable for use in Designer. Refer to the ACTmap
VHDL Synthesis Methodology Guide for additional information about
using ACTmap VHDL.

ACTmap Features
ACTmap contains the following features:

Compile VHDL ACTmap can compile VHDL and target designs for the Actel
architecture. This includes incorporating ACTgen macros that have
been instantiated into the VHDL and compiling hierarchical designs.
Refer to “Compiling VHDL” on page 54 for information about
compiling VHDL files and “Implementing a Hierarchical Project” on
page 59 for information about instantiating macros and creating a
project file.

Optimize
Netlists

ACTmap can optimize a netlist for optimal performance using Actel
devices. Refer to “Optimizing a Netlist” on page 55 for information.

Translate
Netlists

ACTmap acts as a netlist translator by generating VHDL, Verilog, EDIF,
or ADL netlists for Designer or for netlist symbol files. Refer to
“Translating a Netlist” on page 57 for information.

Generate
Symbols

ACTmap can generate symbols from VHDL for use in the Viewlogic
schematic capture tool. Refer to “Adding ACTmap Blocks” in the
Viewlogic Workview Office Interface Guide for information.
51

Chapter 5: ACTmap VHDL Synthesis Tool
Automatic I/O
Insertion

ACTmap automatically inserts global I/Os and buffers in all Actel
family devices. During insertion, ACTmap inserts CLKBUF macros in all
dangling clock network input ports. In addition, it inserts INBUF
macros in all other dangling input ports, and OUTBUF macros in all
dangling output ports.

Silicon Expert can also be used on netlists for further I/O insertion.

Sequential
Remapping

For almost all ACT 3 flip-flops, and for some ACT 2 flip-flops, ACTmap
performs pre-optimized, sequential remapping. The sequential
remapping enhances the optimizer performance to take advantage of
combinatorial and sequential combining features. It divides sequential
library elements into smaller and more basic elements that may
generate better results during optimization. Sequential remapping
applies to both HDL synthesis and optimization.

State Machine
Encoding
Algorithms

You can select between six state-machine encoding algorithms.
ACTmap uses the algorithms to synthesize state machines in ACTmap
VHDL source files to netlists. The following encoding algorithms are
available; Compact, OneHot, Gray, Johnson, Sequential and User.

ACTmap Windows
ACTmap is divided into four windows. Each window performs a
different function. This section describes the windows. Refer to the
ACTmap on-line help for additional information.
52

ACTmap Windows
ACTmap Main
Window

The ACTmap Main window, shown in Figure 5-1, displays report-type
information when an action is performed in ACTmap.

VHDL Compiler
Window

The VHDL Compiler window allows designers to read in a VHDL file
and compile it for a specific Actel family architecture.

Netlist
Optimizer
Window

The Netlist Optimizer window allows designers read in an EDIF, ADL,
or Verilog netlist and optimize it for a specific Actel family architecture.
The optimization output file is an EDIF netlist.

Figure 5-1. ACTmap Main Window
53

Chapter 5: ACTmap VHDL Synthesis Tool
Netlist Translate
Window

The Netlist Translate window allows designers read in an EDIF netlist
generated during optimization, merge this netlist with any existing
EDIF, ADL, or Verilog files, and generate the output in the selected file
format.

Compiling VHDL
ACTmap can compile behavioral, RTL, or structural VHDL design files
for a specified Actel family architecture. Use the following procedure
to compile a VHDL file.

1. Invoke ACTmap.

PC

Select ACTmap VHDL Synthesizer from the Designer menu under
Programs in the Start menu.

UNIX

Type the following command at the prompt:

actmapw

The ACTmap Main window, shown in Figure 5-1, is displayed.

2. Open the VHDL Compiler window. Choose the VHDL Compiler
command from the File menu.

3. Select the VHDL file to compile. Type the full path name of the
design in the Source Design box or click the Browse button.

4. Select a Map Style. Area optimizes for the smallest number of logic
blocks. Speed optimizes for the fastest path through a device.

5. Specify a target family in the Family pull-down menu.

6. Specify a State Encoding type in the State Encoding pull-down
menu. The State Encoding type specifies the Finite State Machine
description used to translate an ACTmap VHDL source file into a
netlist.
54

Optimizing a Netlist
7. Select the optimization Mode. Use the Block mode if you do not
want to add any I/Os. Use the Chip mode to add basic I/Os, Tristate
I/Os, and Bidirectional I/Os to a design block.

Note: If I/Os already exist in the design, ACTmap does not add
additional I/Os.

8. Specify the Max Fanout. Specify a number in the Max Fanout box
to set the maximum fanout limit during netlist mapping. The fanout
range is from 2 to 24. The default option is 16 for all devices. If you
choose an integer greater than 24, ACTmap generates an error
message.

9. Select the Flatten option. If the option is set to On, the netlist is
compiled without hierarchy. If the option is set to Off, ACTmap
preserves the hierarchy during compilation.

10. Compile the design. Click the Run button. ACTmap automatically
enters a file name in the Target Design text box. The name is the
same as the source design, but with an .edn suffix. Compiled
designs can immediately be translated to the desired output format
by selecting the Translate button, or can be further optimized by
selecting the Optimize button.

Optimizing a Netlist
ACTmap can optimize EDIF, ADL, or Verilog netlist for a specific Actel
family architecture. Use the following procedures to optimize a netlist.

1. Invoke ACTmap.

PC

Select ACTmap VHDL Synthesizer from the Designer menu under
Programs in the Start menu.

UNIX

Type the following command at the prompt:

actmapw

The ACTmap Main window, shown in Figure 5-1, is displayed.
55

Chapter 5: ACTmap VHDL Synthesis Tool
2. Open the Netlist Optimizer window. Choose the New Design
command from the File menu and open an ADL or EDIF netlist
through the Read Design dialog box. Go to step 4.

or

Choose the Netlist Optimizer command from the File menu.

The Netlist Optimizer window can also be accessed through the
VHDL Compiler and Netlist Translate windows.

3. Select the netlist to optimize. Type the full path name of the
netlist in the Source Design box or click the Browse button.

4. (Optional) Enter a path and file name in the Target Design
box. If you leave this blank, ACTmap automatically generates an
.edo file with the same name as the Source Design when the netlist
is optimized.

5. Select a Map Style. Area optimizes for the smallest number of logic
blocks. Speed optimizes for the fastest path through a device.

6. Specify a target family in the Family pull-down menu.

7. Specify the format of the source netlist in the Input Format
pull-down menu.

8. Select the optimization Mode. Use the Block mode if you do not
want to add any I/Os. Use the Chip mode to add basic I/Os, Tristate
I/Os, and Bidirectional I/Os to a design block.

Note: If I/Os already exist in the design, ACTmap does not add
additional I/Os.

9. Specify the Max Fanout. Specify a number in the Max Fanout box
to set the maximum fanout limit during netlist mapping. The fanout
range is from 2 to 24. The default option is 10 for ACT 1 and 40MX,
and 16 for all other devices. If you choose an integer greater than
24, ACTmap generates an error message.

10. Optimize the netlist. Click the Run button. ACTmap optimizes the
netlist for the target family using the options set in the Netlist
Optimizer window.
56

Translating a Netlist
Translating a Netlist
ACTmap acts as a netlist translator by generating the VHDL, Verilog,
EDIF, or ADL netlists for the Designer Series or the Viewlogic tools.
ACTmap merges an optimized EDIF netlist with existing netlist files or
ADL files, and generates the desired output file format. Use the
following procedure o translate a netlist.

1. Invoke ACTmap.

PC

Select ACTmap VHDL Synthesizer from the Designer menu under
Programs in the Start menu.

UNIX

Type the following command at the prompt:

actmapw

The ACTmap Main window, shown in Figure 5-1, is displayed.

2. Open the Netlist Translate window. Choose the Translate Netlist
command from the File menu.

3. Select the netlist to translate. Type the full path name of the
netlist in the Source Design box or click the Browse button.

4. Specify a target family in the Family pull-down menu.

5. Specify the format of the source netlist in the Input Format
pull-down menu.

6. Specify the format of the target netlist in the Output Format
pull-down menu.

7. Translate the netlist. Click the Run button. ACTmap automatically
enters a file name in the Target Design text box. The name is the
same as the source design, but with an .opt (ADL or Designer), .edt
(EDIF), .vho (VHDL), or .vlo (Verilog) suffix.
57

Chapter 5: ACTmap VHDL Synthesis Tool
Defining I/Os
Defining I/Os is an optional procedure that allows designers to define
which signals to use during clock buffer insertion. This command is
only available in the VHDL Compiler and Netlist Optimizer window,
and only if the Chip optimization mode is selected. ACTmap names
and inserts I/O macros differently for each Actel device family. Use the
following procedure to define clock buffers:

1. Invoke ACTmap.

PC

Select ACTmap VHDL Synthesizer from the Designer menu under
Programs in the Start menu.

UNIX

Type the following command at the prompt:

actmapw

The ACTmap Main window, shown in Figure 5-1, is displayed.

2. Open the VHDL Compiler window or Netlist Optimizer
window. Choose the VHDL Compiler command or the Netlist
Optimizer command from the File menu.

3. Open the Define I/Os dialog box. Choose the Define I/Os
command from the Options menu. The options available depend
on the device family that is selected. ACT 1 and 40MX display one
clock, “CLK.” ACT 2/1200XL, 3200DX, and 42MX display two
clocks, “CLKA” and “CLKB.” ACT 3 and 54SX display “CLKA,”
“CLKB,” and “HCLK.”

4. Enter the clock port name(s).

5. Click OK. CLKBUF macros are inserted when the Run button is
clicked.
58

Implementing a Hierarchical Project
Implementing a Hierarchical Project
ACTmap can compile all of the VHDL files that make up a design into
a single project using a project file, including ACTgen macros that are
written out in VHDL. The files are then compiled together, preserving
hierarchy and resolving fanout. Follow the steps below to create a
project using the project file:

1. Write the VHDL descriptions of your design. Multiple files may
be used to describe different blocks and levels of hierarchy.

ACTgen macros that are included should be saved in VHDL format
and instantiated into the VHDL. Each macro needs a component
declaration and a port map statement to properly instantiate them.
Refer to “Generating Macros Using ACTgen” on page 41 for
information about creating macros with ACTgen and the ACTmap
VHDL Synthesis Methodology Guide for additional information
about writing VHDL for ACTmap.

2. Create a project file. Use a text editor to enter the names of all the
files used to describe the design including VHDL files generated by
ACTgen. The order that the files are listed in the project file is not
important.

3. Save the project file. Use the top-level design name as the file
name prefix and “.prj” as the file name suffix. Make sure the “.prj”
file is in the same directory as the VHDL design files. ACTmap only
searches the directory where “.prj” file is located for the VHDL
design files. Below is an example project file for a design whose top
level design name is top:

top.vhd
fsm.vhd
counter.vhd
59

Chapter 5: ACTmap VHDL Synthesis Tool
4. Invoke ACTmap.

PC

Select ACTmap VHDL Synthesizer from the Designer menu under
Programs in the Start menu.

UNIX

Type the following command at the prompt:

actmapw

The ACTmap Main window, shown in Figure 5-1, is displayed.

5. Open the VHDL Compiler window. Choose the VHDL Compiler
command from the File menu.

6. Select the project file as the Source Design. Type the path and
name of the project file In the Source Design box, or click the
Browse button.

7. Select Chip as the optimization Mode. CLKBUF macros are
added to the clk ports, INBUF macros are added to the input ports,
and OUTBUF macros are added to the output ports.

8. Specify a target family in the Family pull-down menu.

9. Specify No as the Flatten option. With the option set to Off,
ACTmap preserves the hierarchy during compilation.

10. Compile the design. Click the Run button. ACTmap automatically
enters a file name in the Target Design text box. The name is the
same as the source design, but with an .edn suffix. All the design
files listed in the top.prj file are compiled. ACTmap resolves the
fanout between blocks and hierarchical compilation.
60

Configuration Files
Configuration Files
A configuration file is a file that sets all options in any or all ACTmap
windows. Configuration files allow designers to set the same
compilation, optimization, and translation options for all designs. Once
a configuration file is created it can be open and used every time a
design is opened in ACTmap. This section describes the procedure for
creating and opening a configuration file.

To create a configuration file:

1. Invoke ACTmap.

PC

Select ACTmap VHDL Synthesizer from the Designer menu under
Programs in the Start menu.

UNIX

Type the following command at the prompt:

actmapw

The ACTmap Main window, shown in Figure 5-1, is displayed.

2. Set the desired options in all of the ACTmap windows. Close
each window after setting the options.

3. Save the configuration file. Choose the Save All Configurations
command from the File menu in the ACTmap Main window. The
Save Configuration dialog box is displayed. Enter the name of your
configuration file. Click OK.

4. Specify which ACTmap window options to save. In the Save All
Configurations dialog box select one, multiple, or all windows.
Click OK. ACTmap saves configuration files with an “.ami”
extension.
61

Chapter 5: ACTmap VHDL Synthesis Tool
To open a configuration file:

1. Invoke ACTmap.

PC

Select ACTmap VHDL Synthesizer from the Designer menu under
Programs in the Start menu.

UNIX

Type the following command at the prompt:

actmapw

The ACTmap Main window, shown in Figure 5-1, is displayed.

2. Open a configuration file. Choose the Open Configuration
command from the File menu. The Open Configuration dialog box
is displayed. Type the full path name of the configuration file or
browse to it and select it. Configuration files have an “.ami”
extension. Click OK.

ACTmap reads in the configuration file settings and displays both
the name of the configuration file in the title bar and settings in the
ACTmap window(s).

Using ACTmap in Batch Mode
ACTmap can be used in batch mode. Refer to ACTmap VHDL Synthesis
Methodology Guide for information.
62

6
Design Implementation Using Designer

This chapter describes how to use the Designer place and route
software to optimize and implement designs to program Actel devices.

Importing a Netlist/Compiling a New Design
You must import a netlist and compile it into an ADB file before
working on a new design. The following steps describe the procedure.

1. Invoke Designer. The Designer Main window is displayed.

PC

Choose Designer from the Designer group in the Programs menu
under the Start menu.

UNIX

Type the following command at the prompt:

designer

Figure 6-1. Designer Main Window
63

Chapter 6: Design Implementation Using Designer
2. Open the Import Netlist dialog box. Choose the Import Netlist
File command from the File menu. You can also click the Compile
button or another button in the Main window. Click New when
asked if you would like to import a netlist or open an existing
design. The Import Netlist dialog box is displayed, as shown in
Figure 6-2.

3. Specify netlist options. Specify the type of netlist to import in the
Netlist Type pull-down menu. Select your netlist by typing the full
path name or clicking the Browse button. Select Edif Flavor and
Naming Style (if necessary).

The default EDIF flavor is “GENERIC.” If your EDIF is generated
from a specific CAE environment, choose the appropriate flavor to
maintain CAE specific properties within the netlist. The default
Naming Style is “Generic.” If the naming style is set to VHDL or
Verilog, the names of nets, instances, and ports from an EDIF or
ADL netlist are modified as necessary to conform to VHDL or
Verilog naming conventions.

4. (Optional) Import auxiliary files. If you are using auxiliary files
(DCF, PIN, CRT), click the Auto Loaded Files button to select the
files. Refer to “Importing (DCF), (PIN), and (CRT) Information” on
page 70 for additional information.

Figure 6-2. Import Netlist Dialog box
64

Importing a Netlist/Compiling a New Design
5. Setup the design. Click OK in the Import Netlist dialog box. The
Design Setup dialog box is displayed. Specify the design name and
family. Click OK.

6. Select device and package. In the Device Selection dialog box,
specify Die Package, and Speed Grade. You must specify Die and
Package to continue. Refer to “Device, Package, and Speed Grade”
on page 72 for additional information. Click Next.

Note: If you import a netlist using the Import Netlist File command,
you must click a button in the Designer Main window to
display the Device Selection dialog box.

Figure 6-3. Setup Design Dialog Box

Figure 6-4. Device Selection Dialog Box (Standard)
65

Chapter 6: Design Implementation Using Designer
7. (Optional) Upgrade your compatible SX device to an SXA
device without re-compiling. Select 54SXA from the Change To
drop-down menu in the Device Selection dialog box.

If you selected an SX family device, you will not see the dialog box
displayed above. An SX family device may be upgraded to a
compatible SXA family device without re-compiling. If you chose
an SX device in the Setup Design dialog box (Figure 6-3), you will
see the SX/SXA Device Selection dialog box displayed below in
Figure 6-5.

Note: Devices must be compatible for this feature to operate
properly. Even though the layout information is preserved
when you switch from a (compatible) die of SX to that of SXA
family, you will need to regenerate the fuse files.If the dies
are different, then the layout will be lost.

Figure 6-5. Device Selection Dialog Box (SX/SXA)
66

Importing a Netlist/Compiling a New Design
8. Set device variations. In the Device Variations dialog box, specify
Die Voltage, options, and Pin Restrictions. Refer to “Device
Variations” on page 73 for additional information. Click Next.

Figure 6-6. Device Variations Dialog Box
67

Chapter 6: Design Implementation Using Designer
9. Set operating conditions. In the The Operating Conditions dialog
box, specify Junction Temperature Range and Voltage Range. Refer
to “Operating Conditions” on page 74 for additional information.
Click Finish. Designer compiles the design.

During compile, the message window in the Main window displays
information about your design, including warnings and errors.
Designer issues warnings when your design violates recommended
Actel design rules. Actel recommends that you address all warnings, if
possible, by modifying your design before continuing.

If the design fails to compile due to errors in your input files (netlist,
constraints, etc.), you must modify the design to remove the errors.
You must then re-import and re-compile the files. Refer to the Designer
on-line help for a list of compile warning and error codes.

After the design is compiled, you can run Layout to place and route the
design or you can use the other Designer features, (DT Edit, PinEdit,
DT Analyze, or ChipEdit) to perform additional optimization prior to
place and route.

Figure 6-7. Operating Conditions Dialog Box
68

Opening an Existing Design
Opening an Existing Design
Once you have imported a netlist and compiled a design, you can save
the design as an ADB file. You can then open the ADB file, skipping
the compile step, and perform optimization on the design, including
updating netlist and auxiliary file information.

Designer can open unmodified designs and designs with netlists that
have been modified since the last time it was opened in Designer. If
you have modified your netlist since the ADB file was created,
Designer detects this and prompts you to re-import it. Designer can
also audit auxiliary files when the netlist is changed and prompts you
to re-import these files as well. Changes can even be made to the
netlist when the ADB file is open. Designer notifies you that the netlist
has changed and automatically re-imports the netlist.

Designer can also open designs created in previous versions of
Designer. Refer to “Designs Created in Previous Versions of Designer”
on page 69 for additional information.

Designs
Created in
Previous
Versions of
Designer

Designer can directly open designs created using software versions
1.22 and later, except for versions 3.0 and 3.1.

Designs created in versions 3.0 or 3.1 must be converted to be
compatible with the current version of Designer. Refer to the Designer
Series Development System Conversion Guide for information about
converting these designs.

Designs created in versions other than 3.0 or 3.1 can be opened
directly into Designer using the procedure described in the next
section. The design information contained in existing files is read in to
function with the new software. This conversion occurs automatically
when opening an “.als” or “.def” file.

All existing die, package, pin assignment, and placement routing
information is read and maintained. Designs created in previous
versions of software may need library conversions when loaded into
the Designer environment. If your design requires this conversion, you
will be prompted to allow the software to update the design to the
new library before you attempt to launch any of the Designer features.
69

Chapter 6: Design Implementation Using Designer
To open an existing design:

1. Invoke Designer. The Designer Main window is displayed (see
Figure 6-1 on page 63).

PC

Choose Designer from the Designer group in the Programs menu
under the Start menu.

UNIX

Type the following command at the prompt:

designer

2. Open the design. Choose the Open command from the File Menu.
The Open dialog box is displayed. Type the full path name of the
ADB file (DEF file if your design was created in Designer prior to
Designer 3.0) you want to open or browse to the file and select it.

The software checks time stamps on the netlist. If the netlist has not
been modified, The ADB file is opened. If the netlist has been
modified, Designer prompts you to re-import the updated netlist.
The ADB file is opened and the new netlist is merged with existing
design information.

Importing (DCF), (PIN), and (CRT) Information
Designer contains an option to import additional design information.
Most design methodologies do not require this additional step.
However, if you are using synthesis tools and want to import a delay
constraint file (DCF), criticality (CRT), or I/O pin assignment (PIN) file,
they can be imported when you import a netlist or after the netlist/
ADB has been opened.

To import files when netlist is imported:

1. Import the netlist. Refer to “Importing a Netlist/Compiling a New
Design” on page 63.

2. Open the Auto Loaded Files dialog box. Click the Auto Loaded
Files button.
70

Changing Design Name and Family
3. Select the auxiliary file(s) to import. Select your auxiliary file(s)
by typing the full path name in the box under the type of file(s) you
want to import or the Browse button. Check the Audit File box to
force an import of the auxiliary file, regardless of changes to the
netlist file. Click OK.

To import files after the netlist/ADB file has been opened:

1. Choose the Import Auxiliary File command from the File
menu. The Import Auxiliary File dialog box is displayed.

2. Select an auxiliary file to import. Specify the type of file to
import in the File Type pull-down menu and type the full path
name of the auxiliary file or use the Browse button.

Changing Design Name and Family
Design name and family are set when a netlist is initially imported and
a new design is compiled. However, you can change this information
for existing designs. If you change the family, Designer notifies you
that you must re-import the netlist and automatically prompts you
when you select the next Designer function. Use the following
procedure to change the name of a design and the targeted Actel
family for the design.

1. Choose the Setup Design command from the Options menu
in the Designer Main window. The Setup Design dialog box is
displayed (see Figure 6-3 on page 65).

2. Specify the design name and family. Click OK. Refer to the Actel
FPGA Data Book for Actel Family specifications.
71

Chapter 6: Design Implementation Using Designer
Changing Other Design Information
Device and package information, device variations, and operating
conditions are set when a netlist is initially imported and a new design
is compiled. However, you can change this information for existing
designs using the Device Setup Wizard.

To change design information for existing designs:

Choose the Device Setup Wizard command from the Options menu in
the Designer Main window. Designer prompts you with a number of
dialog boxes. Use the Next button to move to the next dialog box after
you change information or if you do not want to change any
information in that dialog box. The Device Setup Wizard is made up of
the Device Selection, Device Variations, and Operating Conditions
dialog boxes.

Refer to the Actel FPGA Data Book or call your local Actel Sales
Representative for information about device, package, speed grade,
variations, and operating conditions.

Device,
Package, and
Speed Grade

Use the Device Selection dialog box (see Figure 6-4 on page 65) to
specify or change the device and package type and the speed grade
based on your design needs.

Select a device. Available packages are then displayed. Select a
package. Specify a speed grade in the Speed Grade pull-down menu.

Devices that are no longer available from the Device Selection dialog
box can be selected using Designer Script. Because these parts may no
longer be available, do not use these devices unless you have the
parts. Refer to “Using Designer Script” on page 125 for information
about using Designer Script.

Compatible Die Change

When the device is changed, some design information can be
preserved depending on the type of change.

Changing Die Revisions

If the die is changed from one technology to another, all information
except timing is preserved. An example is changing an A1020A
(1.2um) to an A1020B (1.0um) while keeping the package the same.
72

Changing Other Design Information
Device Change Only

Constraint and pin information is preserved, when possible. An
example is changing an A1240A in a PL84 package to an A1280A in a
PL84 package.

Repackager Function

When the package is changed (for the same device), the Repackager
automatically attempts to preserve the existing pin and Layout
information by mapping external pin names based on the physical
bonding diagrams. This will always work when going from a smaller
package to a larger package (or one of the same size). When changing
to a smaller package, the Repackager will determine if any of the
currently assigned I/Os are not bonded-out on the smaller package. If
some of the I/Os are not bonded-out, then the layout is invalidated
and the unassigned pins identified.

Speed Grade

Use the Speed Grade pull-down menu to select an available speed
grade for the selected device and package. If a desired speed grade is
unavailable, then it may not be supported for that device.

Device
Variations

Use the Device Variations dialog box (see Figure 6-6 on page 67) to
specify or change die variations based on your design needs.

Die Voltage

Use the Die Voltage pull-down menu to set 5.0, 3.3/5.0, or 3.3 Volts. To
set the die core to 5.0 Volts and the I/Os to 3.3 Volts, select 3.3/5.0.

PCI Compliance

To utilize the high-current drive buffers in the Multiplex I/Os and meet
PCI specifications, check the Set PCI compliancy mode box.

Pin Restrictions

To avoid using the JTAG pins “TDI,” “TMS,” “TCK,” and “TDO” during
layout, check the Reserve JTAG Pins box. To avoid using the Probe
pins “PRA,” “PRB,” “SDI,” and “DCLK” during layout, check the Reserve
Probe Pins box.
73

Chapter 6: Design Implementation Using Designer
Operating
Conditions

Use the Operating Conditions dialog box (see Figure 6-7 on page 68)
to define the voltage and temperature ranges a device encounters in a
working system. It supports standard industry temperature and voltage
ranges, including commercial (COM), industrial (IND), and military
(MIL). In addition, you can set fully custom ranges by specifying
Custom in the pull-down menu. The operating condition range entered
in the Operating Conditions dialog box is used by DT Analyze, the
timing report, and the back annotation function. These tools provide
the capability to analyze worst, typical, and best case timing. The
operating conditions used are shown in the following table.

The temperature range represents the junction temperature of the
device, which is a function of ambient temperature, air flow, and
power consumption. Because Actel devices are CMOS, power
consumption must be calculated for each design. For most low power
applications (e.g. 250mW), the default conditions should be adequate.
Junction temperature can be calculated from values in the Actel FPGA
Data Book or by using Table 6-2 for example values. Performance
should decrease about 2.5% for every 10 degrees C that the
temperature value is increased.

Temperature Range

Use the pull-down Range box to select COM, IND, MIL or Custom. If
you select Custom, then the Best, Typical, and Worst fields become
editable. You can then modify the range to the desired value (integer)
such that Best ≤ Typical ≤ Worst.

Voltage Range

Use the pull-down Range box to select COM, IND, MIL or Custom. If
you select Custom, then the Best, Typical, and Worst fields become
editable. You can then modify the range to the desired value (real)
such that Best ≥ Typical ≥ Worst.

Table 6-1. Operating Conditions

Timing Process Temperature Voltage

Best Case Best Best Best

Typical Case Typical Typical Typical

Worst Case Worst Worst Worst
74

Changing Other Design Information
Junction Temperature Table

The following information defines the delta increase in temperature
the junction temperature will be over the ambient temperature
depending on package type and air flow. Actual junction temperature
is simply the expected ambient temperature plus the value shown in
the following table. You can calculate junction deltas for additional
wattages by simply multiplying the actual wattage (in watts) times the
value in the table.

Table 6-2. Junction Temp. Deltas at 1W Power Consumption

Package Type
Still Air

(in degrees C)
300 ft/min

(in degrees C)

44 PLCC 52 40
68 PLCC 45 35
84 PLCC 44 38
100 PQFP 55 47
144 PQFP 35 26
160 PQFP 33 26
208 PQFP 33 26
208 RQFP 17 13
80 VQFP 68 55
100 VQFP 43 35
176 TQFP 32 25
225 BGA 25 21
313 BGA 23 18
84 CPGA 33 20
100 CPGA 35 17
132/133 CPGA 30 15
175/176 CPGA 25 14
207 CPGA 22 13
256 CPGA 15 8
84 CQFP 40 30
132 CQFP 55 30
172 CQFP 25 15
196 CQFP 36 24
265 CQFP 30 18
75

Chapter 6: Design Implementation Using Designer
DT Edit
DT Edit allows you to define clock constraints and exceptions and path
constraints for your design. These constraints are used to generate
timing reports, back annotate timing information, and for use in DT
Layout. Although information entered in DT Edit is not used during
Standard Layout, Actel recommends that you use DT Edit to enter
constraints for use in generating timing reports and back annotation. If
you use DT Layout you must enter constraints in DT Edit. The DT Edit
window is shown in Figure 6-8. Refer to the Designer online help for
additional information about using DT Edit.

Clock
Constraintsand
Exceptions

The Clock Constraints section allows you to assign values to each
clock network in your design. Values can be defined by period. Clock
Exceptions indicate that the defined period is not applicable for the
defined pins (which can either be the start or end of a network).
Exceptions are assumed to be don’t care paths (or path length infinite)
unless assigned otherwise under the Path Constraint section.

Figure 6-8. DT Edit Window
76

DT Edit
To assign clock constraints and exceptions:

1. Invoke DT Edit. Click the DT Edit button in the Designer Main
window.

2. Select the clock of interest in the Global Signal pull-down
menu.

3. Define the Period and Duty Cycle.

4. Click the Clock Exceptions EDIT button.

5. Define source or sink points.

6. Select nodes from the left column.

7. Select ADD to define these nodes as exceptions.

8. Click OK.

Path
Constraints

Path Constraints section allows you to define constraints for specific
paths in your design. Path constraints can be defined in terms of either
network starting points or ending points.

To assign path constraints:

1. Invoke DT Edit. Click the DT Edit button in the Designer Main
window.

2. Click the New button.

3. Configure the arrow direction to define the master and slave
directions.

4. Select masters points of interest. Check boxes should be
configured first. Networks can be defined in terms of either pins or
nets. A name filter is also provided at the bottom of the list. Type
in the filter box (U1/* for example) and press Enter to activate the
filter. Click the SA button to select all pins or nets.

5. Select corresponding slaves. Check boxes should be configured
first. A name filter is also provided at the bottom of the list. Type in
the filter box (U1/* for example) and press Enter to activate the
filter. Click the SA button to select all pins or nets.

6. (Optional) Use the “Excepted Only” checkboxes to assign
timing constraints to paths that have been designated as
77

Chapter 6: Design Implementation Using Designer
clock exceptions. Unless this option is selected, timing constraints
will not be allowed on paths that are listed as clock exceptions.

7. Define the delay. Enter the delay in the Delay box.

8. Click OK.

Conflicts

The Path Constraint Editor allows you to enter multiple values for the
same path. The tools consider the tightest constraint to be the one of
interest.

DT Edit
Guidelines

Delay constraints control the DT Layout engine. You can define these
constraints using DT Edit or by using an external DCF file, which must
be imported. The DT Layout engine considers the defined delays when
allocating silicon resources with the goal of meeting or beating all
constraints if possible. The DT Layout engine does this by
automatically considering the performance criticality of one function
versus another when allocating device resources. Because resources
are limited, use the following guidelines to ensure the defined
constraints meet the needs of the design without negatively impacting
device resources.

Set Sufficient Constraints

All constraints for the design should be defined to ensure correct
operation of the DT Layout engine. DT Layout considers networks that
have not been defined to be don’t care paths, and will have a low
priority for resource allocation. If these undefined paths are actually
critical, they may fail to meet performance demands. Incrementally
adding constraints may then cause incremental performance problems
in other undefined networks.

Avoid Unnecessary Constraints

Non-critical paths should also be described to free high performance
device resources. Not defining a path is one mechanism for doing this.
However, it is difficult to avoid defining some don’t care paths, so
Designer provides clock exceptions and global stop sets to enhance
this capability.
78

DT Edit
Avoid Overconstraining

The DT Layout engine is designed to achieve the delay constraint
defined (less than or equal). Defining a constraint shorter than the
actual requirement for margin can have a negative impact on the
performance of the device. The defined network or other networks
may not meet requirements because of competition for device
resources.

For example, consider a design that has a 40MHz clock (25ns period).
When the constraint is set at 23.0ns, the device runs out of overall
resources, making the 23.0ns goal impossible. In fact, the results can
actually be worse than what was originally required because of the
allocation method employed by the DT Layout engine, as shown for
the 22.0ns case in Table 6-3 below.

Limitations

DT Layout cannot currently handle minimum delay or skew
requirements.

Delay
Constraint
Definitions

A description of delay constraint methodology requires the following
terms:

DTL terminals. DT Layout (DTL) terminals define the starting and
ending points for a signal path. They are always I/Os or sequential
elements. No intermediate combinatorial element is currently
supported as a terminal.

Signal Path. The signal path describes a consecutive sequence of logic
macros and nets, the first net being driven by a start terminal, and the
last net driving a macro input pin of the end terminal.

Table 6-3. Constraint Results

Defined Constraint Post DTL Result

25.0ns 24.8ns

24.8ns 23.9ns

23.0ns 24.5ns

22.0ns 25.2ns
79

Chapter 6: Design Implementation Using Designer
Network. A network can consist of 1 or more start terminals and 1 or
more end terminals. All signal paths connecting any start terminal to
any end terminal are included in the network.

Only one delay value can be assigned to each defined network.
Networks can be defined implicitly by a common clock (synchronous
network) or explicitly by a defined set of terminals. Network and Paths
are used interchangeably.

Path Delay. The path delay defines the sum of all the individual
delays of the nets and the logic macros in the signal path.

Delay Constraint. A delay constraint defines a fixed amount of time
required for a signal to propagate from all starting terminals to all
ending terminals for a network.

Don’t Care Path. A signal path in which the delay is considered to be
infinite.

Global Stop. A defined intermediate point in a network that forces all
paths through the defined point to be don’t care paths regardless of
any constraint assignment.

Clock Exception. A terminal in a synchronous network that should be
excluded from the specified clock period. The exception can remain
undefined (don’t care) or can be assigned a unique value in the Path
Constraint Editor.

Assigning Pins
There are two methods for I/O signal placement. You can let Designer
automatically assign I/O locations during Layout, or you can manually
assign I/O locations prior to Layout.

Actel recommends that you let Designer to automatically assign I/O
locations during Layout. Layout is designed to place the I/Os for
optimum routability and performance. Refer to “Layout” on page 84 for
information about automatically assigning I/O locations during place
and route.

If you must manually assign the I/O locations, you can assign I/O
locations in your design schematic, in a pin file that you import into
Designer, or using PinEdit. Refer to documentation included with your
80

PinEdit
CAE tools for information about assigning I/O signal placement in a
schematic or in pin file. Refer to “PinEdit” on page 81 for information
about using PinEdit to manually assign I/O locations.

PinEdit
PinEdit allows you to position I/O signals on device pins using list
boxes and a graphical representation of the device. The PinEdit
window is shown in Figure 6-9.

The Pin window on the left displays a graphic representation of the
pins on the device. When you select an assigned pin in the Pin
window, the selected pin is highlighted in the PLACED list box. The
small window under the UNPLACED list box is a position window that
allows you to change what part of the device you are viewing.

Figure 6-9. PinEdit Window
81

Chapter 6: Design Implementation Using Designer
The PLACED and UNPLACED list boxes display a list of placed or
unplaced I/O signals in the design. Both fixed and unfixed pins are
displayed in the PLACED list box.

Use the Configure List Boxes dialog box under the Options menu to
specify how the pin information displayed in PinEdit.

Assigning I/O
Signals to Pins

Use the following procedure to assign unplaced I/O signal to pins
using Pinedit.

1. Invoke PinEdit. Click the PinEdit button in the Designer Main
window.

2. Assign the I/O signal name to a pin. Select the signal name in
the UNPLACED list box that you want to place, drag the signal
name to the pin location in the Pin window where you want to
place it, then release the mouse button.

To unplace a signal:

Select the signal name in the PLACED list box or Pin window that you
want to unplace, drag the signal name to the UNPLACED list box, then
release the mouse button.

Fixing Pins Pins assigned in a design schematic or a pin file are automatically fixed
and are not moved during Layout. Pins placed by Designer are unfixed
and should be manually fixed at some point in the design cycle.
Unfixed pins may be moved during Layout. Remember, you can move
unfixed pins around as the design is iterated. Fixing pins invalidates a
completed Layout. Use the following procedure to fix pins using
Pinedit.

1. Invoke PinEdit. Click the PinEdit button in the Designer Main
window.

2. Select the pin(s) to be fixed. Click the pin to be fixed in the
PLACED list box or Pin window. To select multiple pins, hold the
Shift button and click multiple pins. To select all pins, choose the
Select All command from the Edit menu.

3. Fix the pin(s). Choose the Fix command from the Edit menu.
82

DT Analyze
To unfix a pin:

1. Select the pin(s) to be unfixed. Click the pin to be unfixed in the
PLACED list box or Pin window. To select multiple pins, hold the
Shift button and click multiple pins. To select all pins, choose the
Select All command from the Edit menu.

2. Unfix the pin(s). Choose the Unfix command from the Edit menu.

Printing Pin
Assignments

Designer has two methods of printing pin assignments, a graphical
printout of the device and a text list of pinouts. These printouts list the
I/O signal locations on the device, sorted by I/O signal names or by
package number.

To print a graphical printout of the device:

1. Invoke PinEdit. Click the PinEdit button in the Designer Main
window.

2. Choose the Print command from the File menu.

To print a text list of pinouts:

Choose the Pin command from the Report menu in the Designer Main
window.

Committing Pin
Assignments

After you have placed and fixed pins, you must commit the changes to
your design. You can commit changes by selecting the Commit
command from the File menu or by exiting PinEdit and clicking Yes
when asked if you would like to commit changed made in PinEdit.

DT Analyze
Use DT Analyze to perform timing analysis. Refer to “Timing Analysis
using DT Analyze” on page 95 for information about using DT
Analyze.
83

Chapter 6: Design Implementation Using Designer
ChipEdit
Use ChipEdit to view and edit the placement of both I/O and logic
macros. Refer to “ChipEdit” on page 117 for information about using
ChipEdit.

Layout
After compiling and optionally using other Designer features, the
design is ready for layout. Layout takes the netlist information, PinEdit
information, and DT Edit information and maps this information into
the selected Actel device. Layout assigns physical locations to
unassigned I/O and logic modules (placement), routing tracks to nets
(routing), and calculates detailed delays for all paths (extract).

Designer supports two modes of layout, Standard and DirectTime. The
physical result of each approach is similar, but the tools and algorithms
are quite different. In either mode, the incremental placement option
allows you to save the performance of a successfully placed and
routed design even if you change the netlist.

Standard
Layout

Standard layout maximizes the average performance for all paths.
Standard layout treats each part of a design equally for performance
optimization. Standard layout uses net weighting (or criticality) to
influence the results.

Standard layout does not consider delay constraints that have been set
for a design during place and route. However, can a delay report
based on delay constraints entered in DT Edit can still be generated for
the design. This is helpful to determine if DirectTime Layout is
required.

DirectTime
Layout

The primary goal of DirectTime layout is to meet delay constraints set
in DT Edit or in a DCF file. The secondary goal is to produce high
performance for the rest of the design. Delay constraint driven design
is more precise and typically results in higher performance.
84

Layout
Incremental
Placement

In either Standard or DirectTime mode, the Incremental Placement
option allows you to preserve the timing of a successfully placed and
routed design, even if you change part of the netlist. Incremental
placement has no effect the first time you run layout. During design
iteration, incremental placement preserves the placement information
for any unchanged macros in a modified netlist. As a result, the timing
relationships for unchanged macros will approximate their initial
values, decreasing the execution time to perform Layout.

By forcing Designer to retain the placement information for a portion
of the design, some flexibility for optimal design layout may be lost.
Therefore, do not use incremental placement to place your design in
pieces. You should only use it if you have successfully run Layout and
you have minor changes to your design. Incremental placement
requires prior completion of Layout. Do not use incremental placement
if the previous Layout failed to meet performance goals.

Incremental placement has two levels, FIX and ON. The FIX setting
treats all unchanged macros as fixed placements. This is the strongest
level of control, but it may be too restrictive for the new placement to
successfully complete. The default ON setting treats unchanged macro
locations as placement hints, but alters their locations as needed to
successfully complete placement.

To layout your design.

1. Click the Layout button. The Layout dialog box is displayed.

Figure 6-10. Layout Dialog Box
85

Chapter 6: Design Implementation Using Designer
2. Select Mode. Select Standard or DirectTime layout Mode.

3. Select Incremental Placement option. Specify OFF, ON or FIX
in the Incremental pull-down menu.

Layout Failures If Layout fails at any stage, Designer provides information that can help
you determine and correct the problem. This section describes some
failures and methods to fix the failures.

Failures During Initialization (DirectTime only)

Layout can fail during initialization if the assigned constraints are
impossible (i.e. no routing path on the device can meet the assigned
constraint). You must change the circuit or relax the constraints to
proceed with DirectTime Layout. Ways to do this include:

• Change the Speed Grade to increase minimum delay.

• Modify the design to reduce the number of logic levels in these paths.

• Relax over-conservative delay constraints. If the constraints from DT
Edit or a DCF file are unnecessarily tight, change them to more
realistic values that still satisfy your timing requirements.

Failures During Constructive Placement

A constructive placement error is very rare. If you get this type of error,
check the following cases and make modifications as necessary:

• ACT 1 and 40MX designs (especially A1010 devices) with many two-
and three-logic module HARD macros are difficult to place and route.
Replace them with logically equivalent implementations along with
the “preserve” property. See “ALSPRESERVE” on page 32 for more
information.

• ACT 2 or ACT 3 designs that utilize more than 95% of the sequential
modules and use many two- and three-logic HARD macros are
difficult to place and route. You can usually use 100% of the modules,
but excessive use of registers may make placement difficult.

• Designs with many manually-placed logic macros are difficult to
place and route. Unplace the pre-placed macros before running
Layout.
86

Extracting Timing Information
• Designs with high fanout networks may be difficult to route.
Consider using Silicon Expert to add buffers to high fanout networks
in your netlist. This maximizes the efficiency of your routing
resources.

Failures During Placement Optimization

If you run into an error during DirectTime Layout, it may be due to
one or more of the following:

• Fixed pin placements may not allow Layout to succeed. Unplace or
unfix I/O pins.

• Designs with very high I/O utilization (above 90%) and very low
logic utilization (below 60%) put excessive demand on the long
vertical or horizontal routing resources of the device. Try using a
smaller device. Often the same design utilizing 50% of an A1280 will
successfully place and route using 100% of an A1240.

• If Layout completes but some delay constraints are not satisfied,
verify that all of your constraints are necessary and sufficient. If there
are constraints for “don’t care” or “false logic” paths, re-enter these
constraints with appropriate exclusions, exceptions, and stop sets.
Then re-run Layout in non-incremental mode.

Extracting Timing Information
Extract allows you to extract (back annotate) post-layout timing data to
your CAE simulator for timing simulation. You can derate the back
annotation for different operating conditions and device speed grades.
87

Chapter 6: Design Implementation Using Designer
To create a back annotation file:

1. Extract back annotation file. Click the Extract button in the
Designer Main window. The Extract dialog box is displayed.

2. Save the file. Set the directory, file name, and CAE type. Click OK.

The Extract program creates the files necessary for back annotation to
the CAE file output type that you choose in the dialog box.

Refer to Actel Interface Guides or the documentation included with
your simulation tool for information about selecting the correct CAE
output format and using the back annotation files.

Fuse
Fuse allows you to generate a programming file. You do not need to
run Fuse if you are using APSW, unless you need to set a silicon
signature. Refer to “Generating a Programming File” on page 113 for
information about using Fuse to set a silicon signature and to generate
a programming file.

Figure 6-11. Extract Dialog Box
88

Exporting Files
Exporting Files
Designer lets you export auxiliary files (.afl, .cob, .crt, .dcf, .loc, .pin,
.prb, seg) fuse files (.afm, .dio, .fus), log files (.log) netlist files (.adl,
.edn, structural VHDL, and structural Verilog), script files (.dsf), and
timing files (.stf and .sdf) from your design.

To export a file:

1. Select the Export command from the File menu in the
Designer Main window. The Export dialog box is displayed.

2. Select file type to export. Specify the type of file you want to
export from the File Type pull-down menu.

3. Specify file name.

4. Specify parameters. Select the parameters (if necessary) in the
Parameters section of the dialog box.

5. Click OK.

Figure 6-12. Export Dialog Box
89

Chapter 6: Design Implementation Using Designer
Generating Reports
Designer has the capability to generate several types of reports that
give designers in depth information about a design. All of the reports
are available from the Report menu in the Designer Main window. This
section describes the reports that can be generated.

Pin Report The pin report allows you to create a text list of the I/O signal
locations on a device. You can generate a pin report sorted by I/O
signal names or by package number.

To generate a pin report:

1. Choose the Pin command from the Report menu in the
Designer Main window. The Pin Report dialog box is displayed.

2. Specify the type of report to generate. Select Number or Name
from the List By pull-down menu, then click OK.

Status Report The status report allows you to create a report containing device and
design information, such as die, package, percentage of the logic and
I/O modules used, etc.

To generate a status report:

Choose the Status command from the Report menu in the Designer
Main window.

Flip Flop Report The flip flop report allows you to create a report that lists the number
and type of flip-flops (sequential or CC, which are flip-flops made of 2
combinatorial macros) used in a design. There are two types of reports
that can be generated, Summary or Extended.

A Summary report displays whether the flip-flop is a sequential, I/O
sequential, or CC flip-flop, the macro implementation of the flip-flop,
and the number of times the implementation of the flip-flop is used in
the design.
90

Generating Reports
An Extended report displays whether the flip-flop is a sequential, I/O
sequential, or CC flip-flop, the macro implementation of the flip-flop,
and individually lists the names of the macros in the design.

To generate a flip flop report:

1. Select the Flip flops command from the Reports menu. The
Flip flop Report dialog box appears.

2. Specify the type of report to generate. Select Summary or
Extended from the Type pull-down menu, then click OK.

Timing Report The timing report allows you to quickly determine if any timing
problems exist in your design. The timing report lists the following
information about your design:

• maximum delay from input I/O to output I/O

• maximum delay from input I/O to internal registers

• maximum delay from internal registers to output I/O

• maximum delays for each clock network

• maximum delays for interactions between clock networks
91

Chapter 6: Design Implementation Using Designer
To generate a timing report:

1. Select the Timing command from the Report menu in the
Designer Main window. The Timing Report dialog box is
displayed.

2. Specify the sort method in the Sort By pull-down menu.
Specify “Actual” to list the actual delays between starting and
ending points. For example, if a signal takes 20ns to get from point
A to point B, the timing report lists 20ns for that path.

Specify “Slack” to list the difference between the actual delay and a
timing constraint previously specified in a DCF file or in DT Edit.
For example, if you specified a timing constraint of 15ns, the timing
report lists 5ns for that path.

For either mode, if you enter a constraint, and the actual delay
exceeds this constraint, the path is automatically expanded.

3. Specify the Slack Threshold. If you select “Slack” as the sort
method, you can limit the number of delays displayed based upon
a slack threshold. For example, if you only want to see delays that
have a slack less than 5ns, enter 5 in the Slack Threshold box.

4. Specify the number of paths to display in the Maximum Paths
box.

5. Select the report mode. Specify Worst, Typical, or Best from the
Case pull-down menu.

Figure 6-13. Timing Report Dialog Box
92

Generating Reports
6. (Optional) Set preferences. Click the Preferences button The
Preferences dialog box is displayed. This dialog box allows you to
configure the timing report to calculate external setup and hold
information for device inputs in addition to the standard
information. Click OK when finished.

7. Click OK in the Timing Report dialog box. A timing report is
generated. All delays are sorted from longest delay (or worst slack)
to shortest delay.

Figure 6-14. Timing Report Preferences Dialog Box
93

Chapter 6: Design Implementation Using Designer
Setting Designer Preferences
You can set the default working directory for Designer. Whenever you
execute a command or function such as Open or Import, Designer
uses the directory you specified as the default directory. Choose the
Preferences command from the File menu to open the Program
Preferences dialog box.

Terminating the Designer Session
To end a Designer session, choose the Exit command from the File
menu. If the information has not been saved to disk, you are asked if
your want to save the design before exiting. If you choose YES, the
<design_name>.adb file is updated with information entered the
current session. If you choose NO, the information is not saved and
the <design_name>.adb file remains unchanged.

Figure 6-15. Program Preferences Dialog Box
94

7
Timing Analysis using DT Analyze

This chapter contains information, procedures, and examples for using
DT Analyze to perform static timing analysis on an Actel design.

DT Analyze
DT Analyze lets you analyze static timing delays for almost any path or
group of paths in your design. This interactive tool is designed for
precise static timing analysis. For dynamic timing analysis of your
design, use the Extract function to back annotate post-layout delays to
your CAE simulator.

DT Analyze works with either pre-layout estimated delays or post-
layout calculated delays. Used in conjunction with DT Edit and DT
Layout, it displays delay constraint goals versus actual results for any
specific path or clock constraint.

Once you initiate the DT Analyze, enter the desired information in the
Filter Box and click OK. A spreadsheet list defining path and delay
information is presented. Post-layout delays are assumed if the Layout
function has been completed (Layout button displayed green).

Configure the spreadsheet using the Filter commands from the Options
menu. You can configure the spreadsheet in terms of pins or nets,
longest or shortest paths, sorting by actual delay or slack, and filtering
on names (starting or ending points) to move to the points of interest.

Expanding
Paths

To expand a path, select the path, then select the List or Chart
command from the Expand menu. The Chart and List are connected,
and selecting individual points on either will highlight both.

List

The List command presents a second spreadsheet defining all delay
components for the selected path.

Chart

The Chart command graphically displays the entire network for the
defined end point along with an expanded spreadsheet containing all
paths. Chart is a useful debug tool for determining the magnitude of a
particular timing problem and options for correcting the problem.
95

Chapter 7: Timing Analysis using DT Analyze
Using DT
Analyze

DT Analyze provides options and commands to sort and display static
timing data according to your specific needs. With the menu
commands, you can select case display preferences, and you can sort
which paths to analyze. Clicking the Preferences button allows you to
select the amount of detail to display for each path.

To set up and use DT Analyze for static timing analysis:

1. Invoke DT Analyze. Click the DT Analyze button in the Designer
Main window. the DT Analyze Filters dialog box is displayed.

2. Choose which paths to analyze. In the Filters dialog box you can
enter specific names or patterns for the start and end terminals, or
you can use the default filter types: inpad (all of the input pad pins),
output (all of the output pad pins), or register (all input pins on the
flip-flops and latches). You must select a Source and Sink or you
will generate a blank report in the DT Analyze window.

Figure 7-1. DT Analyze Filters Dialog Box
96

DT Analyze
3. (Optional) Set analysis preferences. Click the Preferences
button in the Filters dialog box to access the DT Analyze
Preferences dialog box. This dialog box allows you to set the
number of paths to display and choose whether or not to show
cumulative delay and output loading for each path. Click OK when
finished.

Break Path at Register is used to prevent paths, that pass through
either a clock, ground, clear, or preset pin, from being displayed in
DT Analyze.

Figure 7-2. DT Analyze Preferences
97

Chapter 7: Timing Analysis using DT Analyze
4. View DT Analyze results. After you set the filter options, click OK
to display the DT Analyze window. Figure 7-3 shows the report you
would generate if you had specified timing constraints previously.
If you had not set timing constraints, the “Needed,” “Slack,” and
“ID” columns would not appear on the report.

The DT Analyze window shows the following information for each
path:

• Rank. The position of the path relative to others in terms of
delay. The ranking order depends on the “Slack” or “Actual”
selection in the “sort by” option in the Filters dialog box.

Actual: ranking based on actual-delay with longest/shortest.

- Longest: use max

- Shortest: use min

- Slack: ranking based on slack.

• Start terminal (Start). The first pin or net of the path.

• End terminal (End). The last pin or net of the path.

• Actual delay (Actual). The actual delay calculated by DT
Analyze.

Figure 7-3. DT Analyze Window
98

DT Analyze
• Required delay (Needed). The delay constraint or goal for the
path from DT Edit or DCF file. This information is displayed only
if you previously have set timing constraints.

• Difference between required delay and actual delay (slack).
If this number is negative, then the actual delay was longer than
the required delay. If this number is positive, then the actual
delay was less than the required delay (thus meeting the timing
requirement).

• Constraint name (ID). The name of the constraint for this path,
defined in DT Edit or DCF file.

5. Expand path details. Each path has one or more logic macros that
contribute to its total delay. To view the expanded path details
follow these steps:

A. Highlight the path in the DT Analyze window by clicking
anywhere in the path’s row. Follow either step B or step C
depending on whether you want to view path details only (step B)
or path details and a graphical representation of the path (step C).

B. Select the List command from the Expand menu to view the
expanded path’s details, as shown in Figure 7-4.

Figure 7-4. Expand List Dialog Box
99

Chapter 7: Timing Analysis using DT Analyze
The Expand List dialog box lists the following information:

• Pin name (1st Path). The input pin to the logic macro in the first
path.

• Net name (Net). The name of the net driven by the logic macro
output.

• Macro type (Macro). The type of logic macro from the Actel
macro library.

• Actual delay (Delay). The actual delay calculated by DT
Analyze. This column also indicates low-to-high (r) and high-to-
low (f) logic transitions. A delay of 0.0ns indicates that the logic
combining function in Compile has combined this logical
function into the next macro in the path. Logic combination
increases the speed and the density of the circuit.

• Delay type (Typ). The delay types are propagation delay (Tpd),
setup time (Tsu), hold time (Thd), and arrival time (Arr).

• Cumulative delay (Total). The cumulative delay for the path up
to that logic macro.

• Output load (Load). The number of loads that are driven by the
logic macro output.

For each path (rising and falling) between the starting and ending
points, these columns of information are repeated for the 2nd path, 3rd
path, 4th path, etc.
100

DT Analyze Examples
C. Select the Chart command from the Expand menu to view the
path details (as described in step B above) and a graphical
representation of the path, shown in Figure 7-5.

DT Analyze Examples
This section provides examples of how to use the DT Analyze to
determine timing data for your designs. These examples show how to
calculate the following data:

• Maximum register-to-register delay

• Maximum operating frequency

• Clock-to-output delay

• Input-to-output delay

• On-chip data delay

Figure 7-5. Expanded Chart Dialog Box
101

Chapter 7: Timing Analysis using DT Analyze
These examples use the sample circuit shown in Figure 7-6.

X
O

IN

Y
O

IN

D
A

T
A

0

P
A

D

P
A

D

P
A

D

P
A

D

G
N

D

IC
LK

D ID
E

C
LK C

LR

Q

D ID
E

C
LK C

LR

Q

A
N

D
2

N
A

N
D

2

A
N

D
2

D O
D

E

C
LK C

LR

Q

D O
D

E

C
LK C

LR

Q
O

R
2

N
O

R
2

IP
C

L

D
A

T
A

1

G
N

D

IC
LK

IP
C

L

IC
LK

IN

X
1I

N

Y
1I

N

IP
C

LI
N

IN
B

U
F

 B

0

IN
B

U
F

 B

1

ID
E

C
LK

IO
P

C
L

ID
E

C
LK

IO
P

C
L

P
A

D

P
A

D

P
A

D

P
A

D

IO
P

C
LB

U
F

IN
B

U
F

 B

6 YY

YY

IN
B

U
F

 B

5
IO

C
LK

B
U

F

IP
C

L

Y
1

X
1

IC
LK

IR
E

C
B

4

IR
E

C
B

3
Q

N
E

T
A

A B

G
2

Y
N

E
T

 B

B
2

Q
N

E
T

P

A B

G
0

Y
N

E
T

Q

Y Y

X
0

Y
0

A B

G
1

Y

A B

G
3

Y

A B

G
4

Y
D

O
U

T
B

U
FB

10 P
A

D
O

U
T

2

IP
C

L

IC
LK

G
N

D

IO
P

C
L

O
R

E
C

T
H

D O
D

E

C
LK

N
E

T
C

O
U

T
1

P
A

D

H
IG

H
 S

LE
W

E

V
D

D
B

9

IP
C

L

IC
LK

G
N

D

N
E

T
R

IO
P

C
L

O
R

E
C

T
H

D O
D

E

C
LK

O
U

T
0

P
A

D

H
IG

H
 S

LE
W

E

V
D

D
B

8

B
7

Figure 7-6. Sample Circuit
102

DT Analyze Examples
Example 1—
Calculating
Maximum
Register-to-
Register Delay

To determine maximum register-to-register delay:

1. Invoke DT Analyze. Click the DT Analyze button in the Designer
Main window. the DT Analyze Filters dialog box is displayed (see
Figure 7-1).

2. Click the Register boxes under both Source and Sink.

3. Specify the Source and Sink clock nets. Use the pull-down
menus next to the Register boxes to choose the active clock nets.
Choose “All” for both to find delays for all register-to-register paths.

4. Select display order. Select Longest or Shortest in the Show pull-
down menu and Actual in the Sort By pull-down menu to specify
whether the register delays are displayed in order from longest to
shortest or shortest to longest. Otherwise, it depends on Slack.

5. (Optional) Set analysis preferences. Click the Preferences
button in the Filters dialog box to access the DT Analyze
Preferences dialog box. This dialog box allows you to set the
number of paths to display and choose whether or not to show
cumulative delay and output loading for each path. Click OK when
finished.

6. Click OK. DT Analyze displays the results, as shown in Figure 7-7.

The result is two paths shown in descending order. The total delay for
the first path (shown as Rank 1) is 8.2ns. The starting point is the clock
input of B2 (B2:CLK). The end pin (B8:D) is the data input of B8.

Figure 7-7. Maximum Register-to-Register Delay
103

Chapter 7: Timing Analysis using DT Analyze
You can view more path details for any path in DT Analyze by
selecting the List command from the Expand menu, as described in the
previous section. The expanded path details show the delay, delay
type, and loading for each path component.

Figure 7-8 shows the Expand List dialog box for the longest register-to-
register path (Rank = 1) for the sample circuit. The delay is separated
into its individual propagation delay and setup time components.

Example 2—
Calculating
Maximum
Operating
Frequency

In a synchronous design, the maximum operating frequency is the
inverse of the longest register-to-register delay (1/n). Thus, to calculate
maximum operating frequency, calculate maximum register-to-register
delay (as described above) and invert. The register-to-register delay is
the delay from the clock (gate) of a flip-flop (latch) to the data input of
a flip-flop (latch), including all combinatorial gate delays between the
registers and the required setup time on the ending register. In this
example, the maximum frequency is 1/8.2ns = 122MHz. You must use
worst case operating conditions to determine a safe maximum
operating frequency.

Figure 7-8. Expanded Maximum Register-to-Register Delay
104

DT Analyze Examples
Example 3—
Calculating
Clock-to-
Output Delay

In a synchronous system, the clock-to-output delay is important to determine
the setup conditions of the next device on the printed circuit board.

Note: Clock-to-output delay = register clock input to output pad delay.

To determine the clock-to-output delay:

For the sample circuit shown in Figure 7-10, you can determine the
clock-to-output delay using the following commands:

1. Invoke DT Analyze. Click the DT Analyze button in the Designer
Main window. The DT Analyze Filters dialog box is displayed.

2. Click the Inpad box under Source and the Outpad box under
Sink. This specifies the clock-to-output delays and the
combinational input-to-output delays.

3. Select display order. Select Longest or Shortest in the Show pull-
down menu and Actual in the Sort By pull-down menu to specify
whether the register delays are displayed in order from longest to
shortest or shortest to longest. Otherwise, it depends on Slack.

4. (Optional) Set analysis preferences. Click the Preferences button
in the Filters dialog box. The DT Analyze Preferences dialog box lets
you set the number of paths to display and choose whether or not to
show cumulative delay and output loading for each path. Click OK.

5. Click OK. DT Analyzer displays the results, as shown in Figure 7-9.

Figure 7-9. Clock-to-Output Delay
105

Chapter 7: Timing Analysis using DT Analyze
The longest delay, 16.5ns, is from the ICLKIN input signal to the OUT2
output signal. This path is highlighted in Figure 7-10.

Figure 7-10. Clock-to-Output Delay

X
O

IN

Y
O

IN

D
A

T
A

0

P
A

D

P
A

D P
A

D

P
A

D

G
N

D

IC
LK

D ID
E

C
LK C

LR

Q

D ID
E

C
LK C

LR

Q

A
N

D
2

N
A

N
D

2

A
N

D
2

D O
D

E

C
LK C

LR

Q

D O
D

E

C
LK C

LR

Q
O

R
2

N
O

R
2

IP
C

L

D
A

T
A

1

G
N

D

IC
LK

IP
C

L

IC
LK

IN

X
1I

N

Y
1I

N

IP
C

LI
N

IN
B

U
F

 B
0

IN
B

U
F

 B
1

ID
E

C
LK

IO
P

C
L

ID
E

C
LK

IO
P

C
L

P
A

D

P
A

D

P
A

D

P
A

D

IO
P

C
LB

U
F

IN
B

U
F

B
6 YY

YY

IN
B

U
F

B
5

IO
C

LK
B

U
F

IP
C

L

Y
1

X
1

IC
LK

IR
E

C
B

4

IR
E

C
B

3
Q

N
E

T
A

A B

G
2

Y
N

E
T

 B

B
2

Q
N

E
T

P

A B

G
0

Y
N

E
T

Q

Y Y

X
0

Y
0

A B

G
1

Y

A B

G
3

Y

A B

G
4

Y
D

O
U

T
B

U
FB

10 P
A

D
O

U
T

2

IP
C

L

IC
LK

G
N

D

IO
P

C
L

O
R

E
C

T
H

D O
D

E

C
LK

N
E

T
C

O
U

T
1

P
A

D

H
IG

H
 S

LE
W

E

V
D

D
B

9

IP
C

L

IC
LK

G
N

D

N
E

T
R

IO
P

C
L

O
R

E
C

T
H

D O
D

E

C
LK

O
U

T
0

P
A

D

H
IG

H
 S

LE
W

E

V
D

D
B

8
P

A
T

H
 2

P
A

T
H

 3

P
A

T
H

 1

B
7

106

DT Analyze Examples
Example 4—
Calculating
Input-to-
Output Delay

Input-to-output delay is the delay of combinatorial paths from input
pads to output pads. For the sample circuit shown in Figure 7-12, the
combinatorial path is from the data inputs (X0IN, X1IN, Y0IN, Y1IN) to
the output signal, OUT2.

To determine input-to-output delay:

1. Invoke DT Analyze. Click the DT Analyze button in the Designer Main
window. The DT Analyze Filters dialog box is displayed (see Figure 7-1).

2. Click the Inpad box under Source and the Outpad box under
Sink. This displays the clock pad to output delays.

3. Click the List By Net radio button.

4. Select display order. Select Longest or Shortest in the Show pull-
down menu and Actual in the Sort By pull-down menu to specify
whether the register delays are displayed in order from longest to
shortest or shortest to longest. Otherwise, it depends on Slack.

5. (Optional) Set analysis preferences. Click the Preferences
button in the Filters dialog box. The DT Analyze Preferences dialog
box allows you to set the number of paths to display and choose
whether or not to show cumulative delay and output loading for
each path. Click OK when finished.

6. Click OK. DT Analyze displays the results, as shown in Figure 7-11.

Figure 7-11. Input-to-Output Delay
107

Chapter 7: Timing Analysis using DT Analyze
The third longest delay, 15.1ns, is from the YOIN input signal to the
OUT2 output signal. This path is highlighted in Figure 7-12.

X
O

IN

Y
O

IN

D
A

T
A

0

P
A

D

P
A

D P
A

D

P
A

D

G
N

D

IC
LK

D ID
E

C
LK C

LR

Q

D ID
E

C
LK C

LR

Q

A
N

D
2

N
A

N
D

2

A
N

D
2

D O
D

E

C
LK C

LR

Q

D O
D

E

C
LK C

LR

Q
O

R
2

N
O

R
2

IP
C

L

D
A

T
A

1

G
N

D

IC
LK

IP
C

L

IC
LK

IN

X
1I

N

Y
1I

N

IP
C

LI
N

IN
B

U
F

 B

0

IN
B

U
F

 B

1

ID
E

C
LK

IO
P

C
L

ID
E

C
LK

IO
P

C
L

P
A

D

P
A

D

P
A

D

P
A

D

IO
P

C
LB

U
F

IN
B

U
F

B
6 YY

YY

IN
B

U
F

B
5

IO
C

LK
B

U
F

IP
C

L

Y
1

X
1

IC
LK

IR
E

C
B

4

IR
E

C
B

3
Q

N
E

T
A

A B

G
2

Y
N

E
T

 B

B
2

Q
N

E
T

P

A B

G
0

Y
N

E
T

Q

Y Y

X
0

Y
0

A B

G
1

Y

A B

G
3

Y

A B

G
4

Y
D

O
U

T
B

U
FB

10 P
A

D
O

U
T

2

IP
C

L

IC
LK

G
N

D

IO
P

C
L

O
R

E
C

T
H

D O
D

E

C
LK

N
E

T
C

O
U

T
1

P
A

D

H
IG

H
 S

LE
W

E

V
D

D
B

9

IP
C

L

IC
LK

G
N

D

N
E

T
R

IO
P

C
L

O
R

E
C

T
H

D O
D

E

C
LK

O
U

T
0

P
A

D

H
IG

H
 S

LE
W

E

V
D

D
B

8

B
7

P
A

T
H

 2

P
A

T
H

 3

P
A

T
H

 1

Figure 7-12. Input-to-Output Delay
108

DT Analyze Examples
Example 5—
Calculating
On-Chip
Delays

The on-chip delay is the time for signals to arrive on-chip from the
input pads. For the sample circuit shown in Figure 7-14, the longest
on-chip data paths are from the data inputs (X0IN, Y0IN, X1IN, Y1IN)
to the B8 and B9 flip-flops.

To determine On-Chip delays:

1. Invoke DT Analyze. Click the DT Analyze button in the Designer
Main window. The DT Analyze Filters dialog box is displayed (see
Figure 7-1).

2. Click the Inpad box under Source and Register under Sink.

3. Select display order. Select Longest or Shortest in the Show pull-
down menu and Actual in the Sort By pull-down menu to specify
whether the register delays are displayed in order from longest to
shortest or shortest to longest. Otherwise, it depends on Slack.

4. (Optional) Set analysis preferences. Click the Preferences
button in the Filters dialog box. the DT Analyze Preferences dialog
box. allows you to set the number of paths to display and choose
whether or not to show cumulative delay and output loading for
each path. Click OK when finished.
109

Chapter 7: Timing Analysis using DT Analyze
5. Click OK. DT Analyze displays the results, as shown in Figure 7-13.

Figure 7-13. On-Chip Delays
110

DT Analyze Examples
The longest delay, 8.7ns, is from the XOIN input signal to the B8 flip-
flop data input.

X
O

IN

Y
O

IN

D
A

T
A

0

P
A

D

P
A

D

P
A

D

P
A

D

G
N

D

IC
LK

IN
B

U
F

 B

1

D ID
E

C
LK C

LR

Q

D ID
E

C
LK C

LR

Q

A
N

D
2

N
A

N
D

2

A
N

D
2

D O
D

E

C
LK C

LR

Q

D O
D

E

C
LK C

LR

Q
O

R
2

N
O

R
2

IP
C

L

D
A

T
A

1

G
N

D

IC
LK

IP
C

L

IC
LK

IN

X
1I

N

Y
1I

N

IP
C

LI
N

IN
B

U
F

 B

0

ID
E

C
LK

IO
P

C
L

ID
E

C
LK

IO
P

C
L

P
A

D

P
A

D

P
A

D

P
A

D

IO
P

C
LB

U
F

IN
B

U
F

 B

6 YY

YY

IN
B

U
F

 B
5

IO
C

LK
B

U
F

IP
C

L

Y
1

X
1

IC
LK

IR
E

C
B

4

IR
E

C
B

3
Q

N
E

T
A

A B

G
2

Y
N

E
T

 B

B
2

Q
N

E
T

P

A B

G
0

Y
N

E
T

Q

Y Y

X
0

Y
0

A B

G
1

Y

A B

G
3

Y

A B

G
4

Y
D

O
U

T
B

U
FB

10 P
A

D
O

U
T

2

IP
C

L

IC
LK

G
N

D

IO
P

C
L

O
R

E
C

T
H

D O
D

E

C
LK

N
E

T
C

O
U

T
1

P
A

D

H
IG

H
 S

LE
W

E

V
D

D
B

9

IP
C

L

IC
LK

G
N

D

N
E

T
R

IO
P

C
L

O
R

E
C

T
H

D O
D

E

C
LK

O
U

T
0

P
A

D

H
IG

H
 S

LE
W

E

V
D

D
B

8

B
7

P
A

T
H

 3

P
A

T
H

 2

P
A

T
H

 1

Figure 7-14. On-Chip Data Path Delay
111

Chapter 7: Timing Analysis using DT Analyze
Batch Timer
The Batch Timer lets you analyze static timing delays using command
files. It is designed to find timing data for any path or group of paths in
your design. Since it is run through command files instead of
interactive commands, it is well suited for complex analysis of large
numbers of paths. For dynamic timing analysis of your design, use the
Extract function to back annotate post-layout delays to your CAE
simulator. Refer to the Designer on-line help for additional information
about the Batch Timer.
112

8
Generating a Programming File

This chapter describes how to use the Designer Fuse feature to
prepare a programming file for your design to program an Actel
device. This includes information about setting a silicon signature and
preparing programming files for Silicon Sculptor programmers and
Data I/O programmers.

Silicon Signature
You can specify a unique silicon signature to program into the device
when you generate a programming file. This signature is stored in the
design database, the programming file, and programmed into the
device permanently during programming. With Designer tools, you can
use the silicon signature to identify and track Actel designs and
devices. Go to “Generating a Programming File” on page 114 for the
procedure.

Generating a Programming File
Designer can generate a programming file for APSW/Activator
programmers, Silicon Sculptor programmers, and Data I/O programmers.

APSW/Activator
Programmers

The Designer Series includes APSW software to program devices with
Activator 2 and 2S programmers. If you use APSW, you do not need to
use the Fuse command to create a programming file unless you are
specifying a silicon signature. Refer to the Activator and APS
Programming System Installation and User’s Guide for information
about programming a device using APSW software.

Silicon Sculptor
Programmers

Silicon Sculptor programmers use AFM files to program Actel devices.
Refer to the Silicon Sculptor User’s Guide for information about
programming a device using Silicon Sculptor programmers.

Data I/O
Programmers

Data I/O Software/Algorithm Systems program Actel devices on the
Unisite, Pinsite, and 3900 programmers. They require a DIO file to
program Actel devices. Refer to the Data I/O documentation for
information about programming devices with Data I/O programmers.
113

Chapter 8: Generating a Programming File
Generating a
Programming
File

Use the following procedure to generate a programming file and to
optionally enter a silicon signature.

1. Invoke Designer. The Designer Main window is displayed.

PC

Choose Designer from the Designer group in the Programs menu
under the Start menu.

UNIX

Type the following command at the prompt:

designer

2. Open your design. Choose the Open command from the File
menu, select the ADB file to open in the Open dialog box, then
click OK.

Figure 8-1. Designer Main Window
114

Generating a Programming File
3. Open the Export dialog box. Click the Fuse button in the
Designer Main window. The Fuse dialog box is displayed.

4. Specify Fuse in the File Type pull-down menu.

5. (Optional) Name the file. Designer automatically names the file
based on the <design_name>.adb file. You can change the name by
entering it in the File Name box.

Note: Do not add a file extension or suffix to the file name.
Designer automatically adds the extension to the
programming file name when you specify the programming
format.

6. Specify programming format. Select the appropriate file type in
the Format pull-down menu. Select “AFM-APS2” if you are using
APSW/Activator programmers or Silicon Sculptor programmers.
Select “DATA I/O” if you are using Data I/O programmers.

7. (Optional) Enter a silicon signature. Enter a 5-digit hexadecimal
value in the Silicon Signature box to identify the design. Valid
characters are “0” through “9,” and “a” through “f.” You must create
a programming file to set the silicon signature if you are using
APSW to program.

8. Save the programming file. Click OK when finished.

Figure 8-2. Fuse Dialog Box
115

A
ChipEdit

This appendix contains information and procedures about using
ChipEdit to view and manually place I/O and logic macros in a design.

ChipEdit Window
ChipEdit allows you to view and position I/O and logic modules on a
device using list boxes and a graphical representation of the device.
ChipEdit contains two windows and two list boxes. The ChipEdit
window is shown in Figure A-1.

The Chip window on the left displays a graphic representation of the
logic modules on the device. When you select an assigned macro in
the Chip window, the selected macro is highlighted in the PLACED list
box. The small window under the UNPLACED list box is a position
window that allows you to change the area of the device that is
displayed in the Chip window.

Figure A-1. ChipEdit Window
117

Appendix A: ChipEdit
The PLACED and UNPLACED list boxes display a list of placed and
unplaced macros in the design. Both fixed and unfixed macros are
displayed in the PLACED list box.

Use the Configure List Boxes dialog box under the Options menu to
specify how the pin information displayed in PinEdit.

View Menu The following commands allow you to change what is displayed in the
Chip window.

Fit

The Fit command displays the entire design in the Chip window.

Zoom Area

The Zoom Area command allows you to select what area of the design
is displayed in the Chip window.

Zoom In

The Zoom In command enlarges what is displayed in the Chip window
by 200%. The Zoom In command can be chosen multiple times to
zoom in as much as necessary.

Zoom Out

The Zoom Out command reduces what is displayed in the Chip
window by 200%. The Zoom Out command can be chosen multiple
times to zoom out as much as necessary.

Redraw

The Redraw command redraws what is displayed in the Chip window
at the current zoom percentage.

Placed List Box

The Place List Box command toggles the PLACED list box to be
displayed or not displayed.
118

ChipEdit Window
Chip Window
Colors and
Symbols

The Chip window displays a graphical representation of a design using
colors and symbols. Table A-1 describes the colors and symbols used
to represent a design in the Chip window.

Table A-1. Chip Window Colors and Symbols

Color/Symbola

a. Macros that use more than one module appear as one with a gray background
and black symbols.

Definition

White Border A white borders denotes a selected object.

Black Back-
ground

A black background denotes an unused or unplaced
module.

Yellow
Yellow denotes fixed logic modules. If the module is
selected, the symbol appears yellow. If the module is
unselected, the border appears yellow.

Green Green denotes I/O modules.

Red Red denotes clock modules.

Reserved modules that are not user-definable are gray
cross-out symbols on a black background.

Clock modules are red. Unused/unplaced modules are
red symbols on a black background. Used/placed
modules are black symbols on a red background.

Input/Output modules are green. Unused/unplaced
modules are green symbols on a black background.
Used/placed modules are black symbols on a green
background.

Combinatorial modules are blue. Unused/unplaced
modules are blue symbols on a black background.
Used/placed modules are black symbols on a blue
background.

Sequential modules are magenta. Unused/unplaced
modules are magenta symbols on a black background.
Used/placed modules are magenta symbols on a black
background.
119

Appendix A: ChipEdit
Working with
Multiple
ChipEdit
Windows

Working with multiple ChipEdit windows is useful if your design is
large and you want to move macros to different locations. You can
zoom the windows and place, unplace, and move macros between
windows. To place, unplace, and move macros using multiple ChipEdit
windows, invoke multiple ChipEdit windows before continuing.
Macros can be moved between ChipEdit windows.

Placing Macros
Use the following procedure to place macros in your design using
ChipEdit.

1. Invoke ChipEdit. Click the ChipEdit button in the Designer Main
window.

2. Select the macro(s) to be placed. Click the macro to be placed in
the UNPLACED list box. To select multiple macros, hold the Shift
button and click multiple macro names. To select all unplaced
macros, choose the Select All Unplaced command from the Edit
menu.

3. Place the macro(s). If you have selected a single macro to place,
drag the macro to the logic module in the Chip window you want
to place it in, then release the mouse button.

If you have selected multiple macros, choose the Place command
from the Edit menu. ChipEdit then prompts you to place the macros
one at a time.

To unplace placed macros:

4. Select the macro(s) to be unplaced. Click the macro to be
unplaced in the PLACED list box or the Chip window. To select
multiple macros, hold the shift button and click multiple macros. To
select all placed macros, choose the Select All Placed command
from the Edit menu.

5. Unplace the macro(s). If you have selected a single macro to
unplace, drag the macro to the UNPLACED list box, then release the
mouse button. If you have selected multiple macros, choose the
Unplace command from the Edit menu.
120

Moving Macros
Moving Macros
Macros can be moved after they have been placed, either during
Layout, or using ChipEdit. Use the following procedure to move
macros using ChipEdit.

1. Invoke ChipEdit. Click the ChipEdit button in the Designer Main
window.

2. Move the macro. Click the macro to be moved in the PLACED list
box or the Chip window and drag it to the logic module you want
to move it to.

Fixing Macros
Macros are not fixed in Designer unless you use ChipEdit to fix them.
If you have placed or moved macros in ChipEdit and you do not want
Designer to move them during Layout, you should fix the macros in
using the following procedure.

1. Invoke ChipEdit. Click the ChipEdit button in the Designer Main
window.

2. Select the macro(s) to be fixed. Click the macro to be fixed in the
PLACED list box or the Chip window. To select multiple macros,
hold the Shift button and click multiple macros. To select all placed
macros, choose the Select All Placed command from the Edit menu.

3. Fix the macro(s). Choose the Fix command from the Edit menu.

To unfix macros:

1. Select the macro(s) to be unfixed. Click the macro to be unfixed
in the PLACED list box or the Chip window. To select multiple
macros, hold the shift button and click multiple macros. To select
all placed macros, choose the Select All Placed command from the
Edit menu.

2. Unfix the macro(s). Choose the Unfix command from the Edit
menu.
121

Appendix A: ChipEdit
ChipEdit View Options
The PLACED and UNPLACED list boxes can display macro instance
names flat or hierarchically. When macro instance names are displayed
hierarchically, expanded levels are preceded by a plus sign (+) and
collapsed levels are preceded by a minus (-) sign. Clicking the plus
sign expands the hierarchy of a macro. Clicking the minus sign
collapses the hierarchy of a macro. Macros are displayed hierarchically
by default. Figure A-2 is an example of hierarchically displayed
macros.

ChipEdit can also display certain types of macros (fixed, unfixed, or
both). Both fixed and unfixed macros are displayed by default.

Figure A-2. Macros Displayed Hierarchically
122

ChipEdit View Options
To change how macros are displayed:

1. Choose the Configure List Box command from the Options
menu. The List Boxes Configuration dialog box is displayed.

2. Specify the List Type. Select Flat or Hierarchical.

3. Select a Placed Attributes option.

4. Click OK.

Figure A-3. List Boxes Configuration Dialog Box
123

B
Using Designer Script

This appendix contains information and procedures about using the
Designer Script Language to implement designs using Designer. This
includes information about how to write scripts and available script
commands.

Running Designer in Batch Mode
You can run Designer in Batch mode with a Designer Script File (DSF)
or through the Designer interface, with or without arguments. DSF files
can run Designer in Background mode, Foreground mode, or Query
mode.

Background
Mode

In Background mode, Designer is invoked in Batch mode, the DSF is
executed, then Designer is exited.

To run Designer in Background mode:

Type the following command at the prompt:

designer script:script_file.dsf script_mode:batch

Foreground
Mode

In Foreground mode, Designer is invoked in Batch mode, the DSF is
executed, then Designer is left running.

To run Designer in Foreground mode:

Type the following command at the prompt:

designer script:vl.dsf script_mode:startup
125

Appendix B: Using Designer Script
Query Mode In Query mode, Designer is invoked in Batch mode, the DSF is
executed, then Designer is left running.

To run Designer in Query mode:

Type the following command at the prompt:

designer script:qy.dsf script_mode:query

Query Mode allows the invocation of certain key query boxes. The
following is a list of the commands that may be called.

setup_design
set_device
import_netlist
compile
operatopm_cond
dt_edit
pinedit
dt_analyze

Executing
Scripts with
Arguments

To executes a DSF with an argument, the DSF file name and the
argument must be in quotes. for example:

designer script:"script_file.dsf cntroll"

Batch mode argument passing is only supported on UNIX. To use an
argument with a DSF on the PC, you must use the Execute Script
command from the File menu in the Designer interface.

Designer
Interface

You can execute DSF files in Designer by selecting the Execute Script
command from the File menu and then completing the information in
the Execute Script dialog box, including the DSF file name and the
arguments to be passed to the script.
126

Designer Script Language
Designer Script Language
The Designer Script Language supports all of the commands currently
available from the Designer interface in a C-Language-like syntax. A
log file containing these commands is generated as part of the
Designer program. Every command returns a true/false value that can
be used as part of an if statement. The overall commands allow for
function definitions, variables, arithmetic, and if statements.

• Function Definition may be defined including parameters.
Example:

test_program(print_value)
{

print(“value = ”, print_value);
}

• Variables are implied when they are used. The two variable types
are strings and integers. For example:

test_variable(i, j, k)
{

l = 5;
m = “hello world”;
print(“i = ”, i, “j = ”, j, “k = ”, k, “m = ”, m, “n = ”,

n, “\n”);
}

main()
{

test_variable(5, 6, 7);
test_variable(“five”, “six”, “seven”);

}

• The script supports the arithmetic operators ‘+,-,*, / and %’ of
integers, and ‘+’ of strings.

• Standard if statements are supported. Comparison operators are
‘<. <=, ==, !=, >=, and >’.
127

Appendix B: Using Designer Script
Supported Commands
Table B-1 lists the available Actel script commands and provides brief
descriptions of what they do. Refer to “Script Examples” on page 133
for examples of how to use these commands. Bold type indicates the
argument that can be inserted in the command.

Table B-1. Supported Script Commands

Commands Description

arg_count(); The argument count for the script file.

arg_value(i);
The argument value for the argument
“i.”

batch_timer(inputfile, output-
file);

Run the timer, taking commands from
the file inputfile, and writing output to
the file outputfile.

chipedit();
Run the Chip Editor.
Note: This only works in query mode.

close(); Close the current Actel database.

compile(); Perform the compile step.

constraints_exist();
Return a 1 if constraints exist;
0 otherwise.

dt_analyze();
Run the Interactive Timer. Note: This
only works in query mode.

dt_edit();
Run the Delay Constraint Editor. Note:
This only works in query mode.

export(fname, ftype);

The filetype ftype may be adl, afl, edif,
crt, dcf, stf, loc, pin, log, diagnostic,
design_script, session_script,
stf_pre_layout, afm, fus, dio, sdf,
sdf_pre_layout, verilog, vhdl, cob,
sdf1.0, sdf1.0_pre_layout.
128

Supported Commands
extract();
Create files for the back annotation pro-
grams.

file_exists(fname);
Return a 1 if the file exists;
0 otherwise.

fix_all_placed_iopins(); Fixes all placed I/O.

fuse(); Create a fuse file for programming.

gen_pin_report(fname, format);

Generate a pin Report, writing to the
file fname. The format parameter is
optional and determines the pin report
format. Legal values are Name and
Number.

gen_status_report(fname);
Generate a status Report, writing to the
file fname.

gen_timing_report(fname);
Generate a timing Report, writing to the
file fname.

get(varname); Get the value of the variable varname.

get_environment_var(name);
Return the environment variable’s
value.

import_aux_file(fname, ftype);
Read in the file fname. The value of
ftype may be crt, dcf, loc, or pin.

import_netlist(fname, ftype);

Read in the design netlist in the file
fname, of type ftype.
The type ftype may be either edif, adl,
or verilog.

Table B-1. Supported Script Commands (Continued)

Commands Description
129

Appendix B: Using Designer Script
layout();

Place and Route the design, according
to the previously defined states.
Returns: 1 Success
-92 Impossible constraint
-91 DCF error
-100 Place failed
-73 Route failed

new_design (); Create a new Actel database.

open(fname);

Open the actel database fname, or
convert the previous als version of a
design. Legal file types for this com-
mand are:
.adb Designer Actel Database Files
.als Designer files
.def pre-Designer files

pinedit();
Run the Pin Editor. Note this only
works in query mode.

print(value); Print the variable value to the screen.

save(); Save the database.

save_as(fname); Save the database in the file fname.

set(varname, varval);
Set the variable varname, to the value
varval. See “Set Command Variables”
on page 132 for details.

setup_design(design, fam);
Set up the design by the name of
design, using the family fam.

Table B-1. Supported Script Commands (Continued)

Commands Description
130

Supported Commands
set_device("variable1=value1,
variable2=value2, ..., vari-
ableN=valueN");

Set operating conditions as follows:
DIE - Set to the target die.
PACKAGE - Set the value to the target
package.
SPEED is one of: STD, -1, -2, -3, -F.
VOLTAGE is one of: 5.0, 3.0 or 3.3/5.0.
PCI is one of: 1 to set PCI compliance
and 0 to turn off PCI compliance.
JTAG is one of: 1 to Reserve JTAG Pins
and 0 to use JTAG Pins.
PROBE is one of: 1 to Reserve Probe
Pins and 0 to use Probe Pins.
TEMPR is one of: COM, IND, MIL or a
three temperature range.
VOLTR is one of: COM, IND, MIL or a
three voltage range. Mixed voltage parts
accept a six voltage range. The first
three values apply to the I/O voltage
range and the next three values apply
to the core voltage range.

unfix_all_placed_iopins(); Unfixes all placed I/O.

Table B-1. Supported Script Commands (Continued)

Commands Description
131

Appendix B: Using Designer Script
Set Command Variables
The following command variables are used when setting the
set(varname, varval) command, as described under the heading
“set(varname, varval);” in Table B-1, “Supported Script Commands,” on
page 128.

USRDIR default directory

DESIGN design name

Import
Variables

EDNINFLAVOR generic viewlogic mgc

EDNINCFGFILE any unique edif configuration file

NETLIST_NAMING_STYLE generic verilog VHDL

Compile
Variables

NL_PINS_REPLACE_ADB_PINS 0 or 1

Place and
Route Variables

LAYOUT_MODE STANDARD or TIMING_DRIVEN

PLAINC 0 or 1 (incremental mode on or off)

RESTRICTPROBEPINS 0 or 1

RESTRICTJTAGPINS 0 or 1

Timing Report
Variables

TRPT_STHD_CHECK 0 or 1 (report set-up and hold
violations)

TRPT_PATH_BRIEF 0 or 1 (show critical paths only)

TRPT_PASS_CLOCK 0 or 1 (allow timing to pass thru
clock pins)

TRPT_PASS_ASYNC 0 or 1 (allow timing to pass thru PRE
and CLR pins)

TRPT_PATH_EXPND 0 or 1 (expand failed paths)

PROC WORST TYP BEST
132

Script Examples
Extraction
Variables

BA_DIR directory for the extractor

BA_NAME design name for the extractor

BA_CAE type of CAE system

Fuse Variables SIG silicon signature value

Script Examples
Following are two examples of Actel script files. The first is a very
basic script that you would run to create an Actel database for a
design. The second is a more complex script that you would run to
modify an existing Actel database.

Basic Script for
a New Design

The following basic script file is for a new design on a workstation.
This script sets up the design, device, and operating conditions. The
netlist is then imported from the local directory, and the design is run
through Compile, Layout, and Extract. Finally, the database is saved to
preserve the information.

main()
{
new_design();

set("NETLIST_NAMING_STYLE", "VHDL");
setup_design("test", "42MX");

import_netlist("test.edn", "EDIF");
set_device("DIE = A42MX36, PACKAGE = 208 PQFP, SPEED = -2,
VOLTAGE = 3.3/5.0, PCI = 1, JTAG = 1, PROBE = 1, TEMPR = COM,
VOLTR = 3.00 3.30 3.60 4.75 5.00 5.25");

set("SIG", "1984");
compile();
layout();
set("BA_CAE", "GENERIC");
extract();
fuse();
save_as("test.adb");

close();
}

133

Appendix B: Using Designer Script
There are several drawbacks to this basic example. The first is that the
design name is hard coded (TEST), so you would have to make a
script for each design. The second drawback is that if a failure occurs
(in Compile for example), the subsequent functions (Layout and
Extract) will also attempt to rerun Compile because of the demand-
driven nature of the software. Also, you would use this script for one
time only, as you would use the resulting database from this run for
future iterations. The next example, which is more complex, shows
methods for overcoming these drawbacks.

Script for an
Existing Design

The following script is a more complex example for a design iteration
on an existing database on PC. The database must be first opened, the
modified netlist imported, and the functions through Extract executed.
This script has examples of passing arguments and terminating
execution as soon as a failure is detected.

Arguments can be passed in the command line or from the Execute
Script command from the File menu on the Designer main screen. In
this case, the argument is the design name (des_name), making this
script generic for all designs. The only caveat is that default extension
names (.adb, .edn, etc.) must be used. The script also takes advantage
of the globally-defined working directory by having “.\” as the
directory containing the design. The working directory is defined using
the Preferences command from the File menu in the Designer Main
window.

When you open the design, the netlist will automatically be imported if
it has been modified. Taking advantage of the demand-driven feature
of Designer, only Layout (which will force a Compile) and Extract are
launched. If either of these functions fail, a *.log file is exported and
the script terminated (return command). The design is saved before
termination if further investigation is required.
134

Script Examples
main()
{

des_name=(arg_value(1));

/* Open the design */

if(!(open(".\"+des_name+".adb")))
{export(".\"+des_name+".log","log");

save();
return(1); }

/* Process the design */

set("LAYOUT_MODE","STANDARD");
if((layout()!=1)

{ export(".\"+des_name+".log","log");
save();
return(1); }

/* Generate file for back-annotation */
set("BA_CAE","GENERIC");
extract();
export(".\"+des_name+".log","log");
save();
close();
}

Log Files

You can generate a log file of the session by using the following run
time parameter:

logfile:<filename>
135

C
Product Support

Actel backs its products with various support services including
Customer Service, a Customer Applications Center, a Web and FTP site,
electronic mail, and worldwide sales offices. This appendix contains
information about using these services and contacting Actel for service
and support.

Actel U.S. Toll-Free Line
Use the Actel toll-free line to contact Actel for sales information,
technical support, requests for literature about Actel and Actel
products, Customer Service, investor information, and using the Action
Facts service.

The Actel Toll-Free Line is (888) 99-ACTEL.

Customer Service
Contact Customer Service for non-technical product support, such as
product pricing, product upgrades, update information, order status,
and authorization.

From Northeast and North Central U.S.A., call (408) 522-4480.
From Southeast and Southwest U.S.A., call (408) 522-4480.
From South Central U.S.A., call (408) 522-4434.
From Northwest U.S.A., call (408) 522-4434.
From Canada, call (408) 522-4480.
From Europe, call (408) 522-4252 or +44 (0) 1256 305600.
From Japan, call (408) 522-4743.
From the rest of the world, call (408) 522-4743.
Fax, from anywhere in the world (408) 522-8044.
137

Appendix : Product Support
Customer Applications Center
The Customer Applications Center is staffed by applications engineers
who can answer your hardware, software, and design questions.

All calls are answered by our Technical Message Center. The center
retrieves information, such as your name, company name, phone
number and your question, and then issues a case number. The Center
then forwards the information to a queue where the first available
application engineer receives the data and returns your call. The
phone hours are from 7:30 a.m. to 5 p.m., Pacific Standard Time,
Monday through Friday.

The Customer Applications Center number is (800) 262-1060.

European customers can call +44 (0) 1256 305600.

Guru Automated Technical Support
Guru is a Web based automated technical support system accessible
through the Actel home page (http://www.actel.com/guru/). Guru
provides answers to technical questions about Actel products. Many
answers include diagrams, illustrations and links to other resources on
the Actel Web site. Guru is available 24 hours a day, seven days a
week.

Web Site
Actel has a World Wide Web home page where you can browse a
variety of technical and non-technical information. Use a Net browser
(Netscape recommended) to access Actel’s home page.

The URL is http://www.actel.com. You are welcome to share the
resources we have provided on the net.

Be sure to visit the “Actel User Area” on our Web site, which contains
information regarding: products, technical services, current manuals,
and release notes.
138

FTP Site
FTP Site
Actel has an anonymous FTP site located at ftp://ftp.actel.com. You
can directly obtain library updates, software patches, design files, and
data sheets.

Electronic Mail
You can communicate your technical questions to our e-mail address
and receive answers back by e-mail, fax, or phone. Also, if you have
design problems, you can e-mail your design files to receive assistance.
The e-mail account is monitored several times per day.

The technical support e-mail address is tech@actel.com.
139

Appendix : Product Support
Worldwide Sales Offices

Headquarters
Actel Corporation
955 East Arques Avenue
Sunnyvale, California 94086
Toll Free: 888.99.ACTEL

Tel: 408.739.1010
Fax: 408.739.1540

US Sales
Offices

California

Bay Area
Tel: 408.328.2200
Fax: 408.328.2358

Irvine
Tel: 949.727.0470
Fax: 949.727.0476

San Diego
Tel: 619.938.9860
Fax: 619.938.9887

Thousand Oaks
Tel: 805.375.5769
Fax: 805.375.5749

Colorado

Tel: 303.420.4335
Fax: 303.420.4336

Florida

Tel: 407.677.6661
Fax: 407.677.1030

Georgia

Tel: 770.831.9090
Fax: 770.831.0055

Illinois

Tel: 847.259.1501
Fax: 847.259.1572

Maryland

Tel: 410.381.3289
Fax: 410.290.3291

Massachusetts

Tel: 978.244.3800
Fax: 978.244.3820

Minnesota

Tel: 612.854.8162
Fax: 612.854.8120

North Carolina

Tel: 919.376.5419
Fax: 919.376.5421

Pennsylvania

Tel: 215.830.1458
Fax: 215.706.0680

Texas

Tel: 972.235.8944
Fax: 972.235.965

International Sales
Offices

Canada
Suite 203
135 Michael Cowpland Dr,
Kanata, Ontario K2M 2E9

Tel: 613.591.2074
Fax: 613.591.0348

France
361 Avenue General de Gaulle
92147 Clamart Cedex

Tel: +33 (0)1.40.83.11.00
Fax: +33 (0)1.40.94.11.04

Germany
Bahnhofstrasse 15
85375 Neufahrn

Tel: +49 (0)8165.9584.0
Fax: +49 (0)8165.9584.1

Hong Kong
Suite 2206,
Parkside Pacific Place,
88 Queensway

Tel: +011.852.2877.6226
Fax: +011.852.2918.9693

Italy
Via Giovanni da Udine No. 34
20156 Milano

Tel: +39 (0)2.3809.3259
Fax: +39 (0)2.3809.3260

Japan
EXOS Ebisu Building 4F
1-24-14 Ebisu Shibuya-ku
Tokyo 150

Tel: +81 (0)3.3445.7671
Fax: +81 (0)3.3445.7668

Korea
135-090, 18th Floor,
Kyoung Am Building
157-27 Samsung-dong
Kangnam-ku, Seoul

Tel: +82 (0)2.555.7425
Fax: +82 (0)2.555.5779

Taiwan
4F-3, No. 75, Sec. 1,
Hsin-Tai-Wu Road,
Hsi-chih, Taipei, 221

Tel: +886 (0)2.698.2525
Fax: +886 (0)2.698.2548

United Kingdom
Daneshill House,
Lutyens Close
Basingstoke,
Hampshire RG24 8AG

Tel: +44 (0)1256.305600
Fax: +44 (0)1256.355420
140

Index
A
Actel

FTP Site 139
Libraries 19
Manuals xiii
Web Based Technical Support 138
Web Site 138

ACTgen
Buffering 46
Fan-In Control 46
Features 41
Generating a Macro Report 48
Generating New Macros 43
LOG File 48
Main Window 42
Modifying Existing Macros 44

ACTmap
Batch Mode 62
Compiling VHDL 54
Configuration Files 61
Defining I/Os 58
Features 51
Hierarchical Project 59
Main Window 53
Optimizing Netlists 55
Translating a Netlist 57

Actual Delay 98, 100
Adding

Global Networks 20
Ground 19
Pins 32
Power 19
Properties 32

Assigning Pins 80
Assumptions xii
Automatic
Fan-In Reduction 22
Logic Reduction 22
Module Reduction 22
Pin Assignment 33

Auxiliary Files 64, 70

B
Back Annotation 87

Effects of Combiner 27
Batch Mode

ACTmap 62
Designer 125–135
Designer Commands 128
Designer Variables 132

Batch Timer 112
Behavioral Simulation 11
Buffering 30

ACTgen 46

C
Calculating Module Utilization 31
Capturing a Design

HDL-Based 11
Schematic-Based 8

Changing Design Information in Designer 71
ChipEdit 117–123

Clock Module Symbol 119
Color Definitions 119
Combinatorial Module Symbol 119
Fixed Logic Module Symbol 119
Fixing Macros 121
Input/Output Module Symbol 119
Moving Macros 121
Multiple Windows 120
Placing Macros 120
Reserved Symbol 119
141

Index
Selected Objects Symbol 119
Sequential Module Symbol 119
Symbol Definitions 119
Unplaced Module Symbol 119
View Options 122
Window 117

CLK 21
CLKA 21
CLKB 21
Clock

Dedicated 21
Exceptions 76
Routed 21

Clock Constraints 76
Clock to Output Delay 105
Combinatorial Module Reduction 23
Combiner 22

Back Annotation Effects 27
Combining Modules 22

40MX 28
ACT 1 28

Compile 2, 63–68
A New Design 63
Options 64
VHDL 54

Configuration Files 61
Constant Input Reduction 26
Constraint

Clock 76
Definitions 79
Entering in DT Edit 76
Exceptions 76
Name 99
Path 77

Contacting Actel
Customer Service 137
142
Electronic Mail 139
Technical Support 138
Toll-Free 137
Web Based Technical Support 138

Conventions xiii
CRT File 70
Cumulative Delay 100
Customer Service 137

D
DCF File 70
DCLK 37
Dedicated Clocks 21

HCLK 21
IOCLK 22

Defining I/Os 58
Delay 100

Clock to Out 105
Estimating 38
Input to Output 107
On-Chip 109
Type 100

Design Creation/Verification 8, 11
Behavioral Simulation 11
EDIF Netlist Generation 8, 12
Functional Simulation 8
HDL Source Entry 11
Schematic Capture 8
Structural Netlist Generation 12
Structural Simulation 12
Synthesis 12

Design Flow
Design Creation/Verification 8, 11
Design Implementation 9, 12
Schematic-Based 7–9
Synthesis-Based 10–13

Index
Design Implementation 9, 12
Place and Route 9, 13
Timing

Analysis 9
Timing Analysis 13
Timing Simulation 9, 13

Design Information
Changing in Designer 71–75

Design Layout 9, 13
Design Setup 65, 71
Design Synthesis 12
Designer

Assigning Pins 82
Auxiliary Files 64, 70
Batch Mode 125–135
Batch Mode Commands 128
Batch Mode Variables 132
Batch Timer 112
Changing Design Information 71–75
ChipEdit 117–123
Compile 63
Compiling a New Design 63–68
Converting a Design 69
Converting Designs 69
Device Variations 67
DT Analyze 9, 13, 95–111
DT Edit 76–80
Existing Designs 69–70
Exiting 94
Exporting Files 89, 115
Extract 87
Fixing PIns 82
Flip Flop Report 90
Fuse 113–115
Import Netlist Options 64
Importing a Design 63–68
Incremental Placement 85
Layout 84–87
Layout Failures 86
Main Window 63
Naming a Design 65
Opening a Design 69–70
Overview 1–5
Pin Report 90
PinEdit 81–83
Place and Route 9, 13
Preferences 94
Programming File 115
Reports 90
Script Language 125–135

Commands 128
Variables 132

Selecting a Package 65, 72
Selecting Device Family 65
Selecting Device Variations 73
Selecting Die 65, 72
Selecting Die Voltage 67, 73
Selecting Operating Conditions 68, 74
Selecting Speed Grade 65, 72
Status Report 90
Timing Analysis 9, 13
Timing Constraints 76–80
Timing Report 91

Designs
Hierarchical 19
Multiple Sheet 19

Device
Programming 9, 13
Selection 65, 72
Variations 67, 73
Verification 9, 13

Device Selection 65
143

Index
Device Setup Wizard 72
Device Selection 65, 72
Device Variations 67, 73
Operating Conditions 68, 74

Device Variations 67, 73
DirectTime Analyze. See DT Analyze
DirectTime Edit. See DT Edit
Document Assumptions xii
Document Conventions xiii
Document Organization xi
DT Analyze 4, 95–111

Analyzing Paths 96
Clock to Output Delay 105
Examples 101–111
Expanding Paths 95
Input to Output Delay 107
Maximum Operating Frequency 104
On Chip Delay 109
Preferences 97
Register to Register Delay 103
Static Timing Analysis 9, 13
Viewing Results 98

DT Edit 76–80
Clock Constraints 76
Constraint Definitions 79
Exceptions 76
Guidelines 78
Path Constraints 77
Window 76

DT Layout 85
Duplicating Logic 30

E
EDIF Netlist Generation

Schematic-Based 8
Synthesis-Based 12
144
Electronic Mail 139
End Terminal 98
Entering Constraints in DT Edit 76
Estimating Delays 38
Exiting Designer 94
Expanding Paths 99
Expanding Pins in DT Analyze 100
Exporting Files 89, 115
Extract 4, 87

F
Failures, Layout 86
Fan Out 30
Fan-In Control

ACTgen 46–48
Fan-In Reduction 22, 27
Files

Auxiliary 64, 70
Configuration 61
Exporting 89

Fixing
Macros 121
Pins 82

Flip Flop Report 90
Functional Simulation 8
Fuse 4, 113–115

Generating Programming Files 113
Silicon Signature 113

G
Gate-Level Netlist 12
Generating 38

ACTgen Macros 43
EDIF Netlist 8, 12
Gate-Level Netlist 12
Reports in Designer 90

Index
Silicon Signature 113
Structural Netlist 12

Generating Programming Files 113
Global Network 20
GND 19
Ground 19

H
HCLK 21
HDL Source Entry 11
Hierarchical

Designs 19
Project 59

High Fan Out 30

I
I/O

Clock 22
Defining 58
Module Utilization 31

Implementing a Hierarchical Project 59
Importing

Auxiliary Files 64
Netlist into Designer 63

Importing Auxiliary Files 70
Incremental Placement 85
Input to Output Delay 107
IOCLK 22
IOPCL 22

J
JTAG Pins 38

Reserving 67, 73

L
Layout 3, 84–87
Failures 86
Incremental Placement 85

Libraries 19
Load 100
LOG File

ACTgen 48
Logic Module Utilization 31
Logic Reduction 22, 26

M
Macro 100

ACTgen 43, 44
Fixing 121
Moving 121
Placing 120

Manual Pin Assignment 33
Maximum Operating Frequency 104
Modifying ACTgen Macros 44
Module Reduction 22

40MX 28
ACT 1 28
Combinatorial 23

Moving Macros 121
Multiple Sheet Designs 19

N
Naming a Design 65
Naming Conventions

Schematic 15
Verilog 15
VHDL 17

Net
Loading 30
Name 100

Netlist
Importing into Designer 63–68
145

Index
Importing Options 64
Optimizing 55
Translating 57

Netlist Generation
EDIF 8, 12
Gate-Level 12
Structural 12

Network 20
New Design 63

O
On Chip Delay 109
On-Line Help xv
Opening a Design 69–70

Converting 69
Operating Conditions, Selecting 68, 74
Optimizing Netlists 55
Output Load 100

P
Path

Analyzing 96
Constraints 77
Expanding 95, 99

Pin
Adding 32
Assigning 80
Assignment 32–38
Automatic Assignment 33
DCLK 37
JTAG 38
Name 100
PRA 37
PRB 37
Printing a List 90
Printing Layout 83
146
Probe 37
SDI 37
TCK 38
TDI 38
TDO 38
TMS 38
Unused I/O 37

PIN File 70
PinEdit 3, 81–83

Assigning Pins 82
Committing Pin Assignments 83
Fixing Pins 82
Printing Pin Layout 83
Window 81

Place and Route 9, 13
Placing Macros 120
Post-Synthesis Simulation 13
Power 19
PRA 37
PRB 37
Preferences

Designer 94
DT Analyze 97

Preserving Macros 32
Printing

Pin List 90
Timing Information 91

Printing Pin Layout 83
Probe Pins 37

Reserving 67, 73
Product Support 137–140

Customer Applications Center 138
Customer Service 137
Electronic Mail 139
FTP Site 139
Technical Support 138

Index
Toll-Free Line 137
Web Site 138

Programming
Device 13
File Format 115

Programming a Device 9
Property, ALSPRESERVE 32

R
Rank 98
Register to Register Delay 103
Related Manuals xiii
Remapping 24
Reports

ACTgen 48
Designer 90

Required Delay 99
Routed Clocks 21

CLK 21
CLKA 21
CLKB 21
QCLK 21

S
Schematic Capture 8
Schematic-Based Design Flow 7–9

Design Creation/Verification 8
Design Implementation 9
Programming 9
System Verification 9

SDF File 87
SDI 37
Selecting

Die 65, 72
Die Voltage 67, 73
Junction Temperature Range 68
Operating Temperature Range 68
Package 65, 72
PCI Compliance 67, 73
Speed Grade 65, 72
Voltage Range 68

Selecting Junction Temperature Range 74
Selecting Operating Temperature Range 74
Selecting Voltage Range 74
Sequential Remapping 24
Setup Design 71
Silicon Signature 113

Format 115
Simulation

Behavioral 11
Functional 8
Schematic-Based 8, 9
Structural 12
Synthesis-Based 11, 12, 13
Timing 9, 13

Slack 99
Special Clocks 22

IOPCL 22
Standard Layout 84, 85
Start Terminal 98
Static Timing Analysis 9, 13, 95–111
Status Report 90
STF File 87
Structural Netlist Generation 12
Structural Simulation 12
Symbol, Top Level 38
Synthesis 12
Synthesis-Based Design Flow 10–13

Design Creation/Verification 11
Design Implementation 12
Programming 13
System Verification 13
147

Index
System Verification 9, 13
Silicon Explorer 9, 13

T
TCK 38
TDI 38
TDO 38
Technical Support 138
Timing Analysis 9, 13, 95–111
Timing Constraint 38

Clock 76
Definitions 79
Entering in DT Edit 76
Exceptions 76
Path 77

Timing Driven Layout 85
Timing File 87
Timing Report 91
Timing Simulation 9

Post-Synthesis 13
Timing File 87

TMS 38
Toll-Free Line 137
Top Level Symbol 38
Total 100
Translating a Netlist 57

U
Unit Delays 8, 11
Unused Logic Removal 26
Utilization 31

V
VCC 19
VHDL, Compiling 54
148
W
Web Based Technical Support 138

	Table of Contents
	List of Figures
	List of Tables
	Design Implementation Using Designer
	Importing a Netlist/Compiling a New Design
	Opening an Existing Design
	Importing (DCF), (PIN), and (CRT) Information
	Changing Design Name and Family
	Changing Other Design Information
	DT Edit
	Assigning Pins
	PinEdit
	DT Analyze
	ChipEdit
	Layout
	Extracting Timing Information
	Fuse
	Exporting Files
	Generating Reports
	Setting Designer Preferences
	Terminating the Designer Session

	Timing Analysis using DT Analyze
	DT Analyze
	DT Analyze Examples
	Batch Timer

	Generating a Programming File
	Silicon Signature
	Generating a Programming File

	ChipEdit
	ChipEdit Window
	Placing Macros
	Moving Macros
	Fixing Macros
	ChipEdit View Options

	Using Designer Script
	Running Designer in Batch Mode
	Designer Script Language
	Supported Commands
	Set Command Variables
	Script Examples

	Product Support
	Actel U.S. Toll-Free Line
	Customer Service
	Customer Applications Center
	Guru Automated Technical Support
	Web Site
	FTP Site
	Electronic Mail
	Worldwide Sales Offices

	Index

