

Successful High-Speed Board Design

What Is High Speed?

- Definition of High Speed Has Changed with Technology
 - 1990: 50 MHz
 - 1995: 200 MHz
 - 2002: 1.25 3.125 Gbps or More
- Faster Systems Require More Attention to Detail

- Ideal Transmission Lines
- Termination
- Lossy Transmission Lines
- Pre-Emphasis & Equalization
- Simulation (Using HyperLynx)
- References
- Summary

Wires

Wires in Digital Systems Consist of

- Traces on PC Boards & Backplanes
 - i.e., Microstrip & Striplines

Coaxial Cable

Tyco VHDM Connectors

Wire Model

- Traditional Wire Model Ideal
 - No Capacitance, Inductance or Resistance

Traditional Wire Representation

- High-Speed Analysis
 - Model Wire as Infinitesimal Segments of Resistance-Inductance-Conductance-Capacitance (RLGC) Elements

Infinitesimal Segment of a Wire Modeled as RLGC Circuit

Lossless Transmission Line Model

- R & G Significantly Small
 - Omitted for First-Order Approximation
 - No Line Losses from Dissipation
- R & G Components of Impedance Significant Only for High-Frequency or Lossy Lines

Characteristic Impedance

- Characteristic Impedance (Z_o) of Transmission Line
 - Ratio of Voltage & Current Waves at Any Point of Line

$$Zo = \left(\frac{L}{C}\right)^{1/2} = \left(\frac{V}{I}\right)$$

Infinitely Long Representation of a Transmission Line Model

Infinitely Long Representation of a Transmission Impedance

Transmission Line Representation

- Transmission Line Characteristics
 - Characteristic Impedance, Z₀
 - Length (Propagation Delay), T_{PD}

Transmission Line Basic Rules

Three Basic Rules for Transmission Line Analysis

- Waves Propagate on Line
 - Both Directions
- Waves Reflect Unless Terminated
- Voltage Is Superposition of Waves

Later Slides Show Simulation Example

Ideal Transmission Lines

Termination

- Lossy Transmission Lines
- Pre-Emphasis & Equalization
- Simulation (Using HyperLynx)
- References
- Summary

Termination Circuits

Many Common Termination Circuits

- Parallel Termination
- Series Termination
- Thevenin Load Termination
- Active Load Termination
- Fly-By Termination
- Differential Termination

Stratix Terminator Technology

On-Chip Termination Resistors

- Dynamically Adjust with Voltage & Temperature
- Two Reference Resistors Required for Each I/O Bank
- Each I/O Bank is All Parallel or All Series
 - External Resistors Must be Used if Both Series & Parallel Termination Required

Termination Type	Top & Bottom I/O Banks	Left & Right I/O Banks
Series / Impedance Matching (R _s)	\checkmark	\checkmark
Parallel (R _t)	\checkmark	
Differential		\checkmark

Series Termination & Impedance Matching

I/O Standard	R _S
3.3-/2.5-/1.8-V LVTTL	25 or 50 Ω
3.3-/2.5-/1.8-V LVCMOS	25 or 50 Ω
SSTL-2/-3 Class I	25 Ω
SSTL-2/-3 Class II	25 Ω

Parallel Termination

(1) HSTL Class II Pin Example(2) Internally Generated

I/O Standard	R _{T1}	R _{T2}
SSTL-2/-3 Class I	-	50 Ω
SSTL-2/-3 Class II	50 Ω (3)	50 Ω
HSTL Class I	-	50 Ω
HSTL Class II	50 Ω	50 Ω
GTL / GTL+	50 Ω	50 Ω
СТТ	-	50 Ω

(3) Driver Uses On-Chip Series & External Parallel Termination Resistors

Stratix GX Differential Termination

- Stratix GX Offers On-Chip Differential Termination
 - Both Transmitter & Receiver

Agenda

- Transmission LinesTermination
- Lossy Transmission Lines
- Pre-Emphasis & Equalization
- Simulation (Using HyperLynx)
- References
- Summary

Lossy Transmission Lines

- High-Frequency Signals Subject to Losses within Transmission Medium
 - Skin Effect Causes Frequency-Dependent Series Resistance
 - Dielectric Absorption Causes Frequency-Dependent Conductance
- Both Skin Effect & Dielectric Absorption Increase High-Frequency Attenuation

Lossy Transmission Line Model

Cannot Omit R & G When Analyzing Lossy Transmission Lines

Skin Effect

 High-Frequency Current Flows Primarily on Conductor Surface

Changing Current Distribution Increases Resistance as Function of Frequency

Dielectric Absorption

- High-Frequency Signals Excite Insulator Molecules
 - Attenuate Signal
- Dielectric Absorption Often Specified as Loss Tangent tan(δ)
- Lower tan(δ) = Less Loss

List of Common Dielectric Material Loss Tangents

Material	tan(δ)@1MHz
FR4	0.035
Polyamide	0.025
GETEK	0.010
Teflon	0.001

Why Are Losses Important?

Transmission Line Losses Attenuate Eye Diagram

Reduces Noise Margins

Setup Utilities Help Triggered Tektronix Edit View JU C Run/Stop Acg Mode Sample 🔻 Trig External Direct 💌 🦯 0.0V 50% tu wu u m H w w 7 + + H H tv tv N 🚿 Amplitude 506.0mÝ M1 100.0mV/div WfmDB1 (Main M1 Cursors(Mn M1) v1. 6.000mV 60.05mV ν2 Δv. 54.05mV 494.0mV 200.0ps/div 100.0mV/ 🗒 🕂 0.0V Main 🔍 🍳 200.0ps/di 🖪 🔶 剾 4:16 PM 3/20/02

Effects of Lossy Line

Effect 1: IR Loss (Frequency Attenuation)

- Caused By Skin Effect Increasing Resistance for High Frequency Signals
- Simulate Frequency Response as Low Pass Filter

Effects of Lossy Line

Effect 2: Pattern-Dependent Jitter (PDJ)

- Due to Intersymbol Interference (ISI)
- Rise & Fall Times Affected by Data Sequence

Agenda

- Transmission Lines
- Termination
- Lossy Transmission Lines
- Pre-Emphasis & Equalization
- Simulation (Using HyperLynx)
- References
- Summary

Compensate for Lossy Line

- Compensate for Losses, Boost High-Frequency Components
- Increasing Overall Signaling Level Causes Negative Effects
 - Increases Proportional Noise
 - Increases Pattern-Dependent Jitter
 - Increases Power Consumption

Pre-Emphasis & Equalization

Pre-Emphasis Theory

- Reduce PDJ, Increase (Pre-Emphasize) High-Frequency Components
 - When Signal Switches, Increase Differential Swing
 - When Run Length Exceeds One, Signal Is
 De-Emphasized to Lower Voltage Level

Pre-Emphasis Example 1

Signal Transmitted over 1-m, 5-mil Stripline

Digital Systems Engineering, William J. Dally & John W. Poulton, Pg 365

Pre-Emphasis Example 2

Digital Systems Engineering, William J. Dally EE273, L8, Feb 06, 2002

Stratix GX Programmable Pre-Emphasis

- Support for 0% to 25% Pre-Emphasis on Transmitter Channels
 - Maximum Limit for V_{OD(peak-to-peak)} Is 1,600 mV

Original	V _{op} with Pre-Emphasis <i>(1)</i>				
VOD	5%	10%	15%	20%	25%
400	420	440	460	480	500
480	504	528	552	576	600
600	630	660	690	720	750
800	840	880	920	960	1000
960	1008	1056	1104	1152	1200
1,000	1050	1100	1150	1200	1250
1,200	1260	1320	1380	1440	1500
1,400	1470	1540			
1,440	1512	1584			
1,500	1575				
1,600					

(1) Calculated as a Percentage of Original V_{OD} Setting

Programmable Equalization

- Receiver Uses Programmable Equalization to Boost High-Frequency Gain
 - Negates Effect of High-Frequency Losses
- Stratix GX Equalizer Compensates for 20" or 40" of FR4 Trace
 - Boosts Signals Up to 9 dB

Equalization Effect

- Equalizer Successfully Compensates for Transmission Line Attenuation
- Blue Line Shows Overall Flat Response

Agenda

- Transmission Lines
- Termination
- Lossy Transmission Lines
- Pre-Emphasis & Equalization
- Simulation (Using HyperLynx)
- References
- Summary

PCB Design Flow

PCB Design Flow

Pre-Layout

Two Types of Simulation

Pre-Layout

Examine Stackup of 4-Layer BoardTool Calculates Impedance

Edit Stackup		×
Note: Impedances shown below are computed from the test trace	Edit Selected Layer	
No errors found in stackup.	Delete Selected Layer	
1 100 p//// Sig 1.00 oz, 20=50.4 ohms 1 Diel 8.00 mils 1	C Dielectric C Signal C Plane	Add Layer ^
Plane 1.00 oz	Measureme	nt Units
4 BOTTOM//// Sig 1.00 oz, 20=50.4 ohms	Copy to Clip	Print
		Cancel
		Help
Total PCB thickness: 61.40 mils		
 PCB Fabrication Compensation Enable compensation Usually disabled (see Help) Hints Select a layer by clicking on it. To move a layer, drag it with the second seco	ne mouse.	

- Determine Delay, L, C & R Values from Stackup
- Find New Electrical Parameters after Changing Dimensions
 - Microstrip vs. Stripline

With New Length, Tool Reports New Electrical Properties

Set 50- Ω Termination Resistor for 50- Ω Impedance

🐣 HyperLynx 🔚 File Edit View Insert Scope/Sim Spectrum/Sim Wizards Options Help **??**C LSIM DVA a 🕀 🗶 🐺 2 الكنيم \mathbb{R} U(A0) 80., 8a., APEX20k 20k 3 p CELL:A0 50.5 ohms CELL:B0 441.972 ps 3.000 in 50.0 ohms RD(B0) = = ? × 80. Value Parasitics \sim 50.000 ohms Resistance: ģ). i . . . Hint Default package parastics are set smaller than a leaded package and larger than an SMT package. See Parasitics tab for details and suggestions. 瓵 ΟK Cancel C

Board

- Examine Simulation Waveform Output
- Blue & Red Traces Show Different Probe Points

Different Line Length Causes Different Delay

30-Ω Termination Resistor Causes Signal Integrity Issues

Post-Layout Simulation

Pull Board Layout into Simulation ToolCan Simulate Based on Exact Layout

Altera Simulation Tools

- Altera Provides IBIS Models on www.altera.com
- Encrypted Spice Models Available by Request

Agenda

- Transmission Lines
- Termination
- Lossy Transmission Lines
- Pre-Emphasis & Equalization
- Simulation (Using HyperLynx)
- References
- Summary

References

- H. Johnson & M. Graham, <u>High Speed Board</u> <u>Design</u>, Prentice Hall, Inc., 1993
- Stephen Hall, Garrett Hall, & James McCall, <u>High-Speed Digital System Design</u>, John Wiley & Sons, Inc., 2000
- William J. Dally and John W. Poulton, <u>Digital</u> <u>Systems Engineering</u>, Cambridge University Press, 1998
- Altera Application Note 224: High-Speed Board Layout Guidelines

Summary

- Keys to Success with High-Speed Board Design
 - Understanding Basic Theory
 - Considering Signaling Issues During Design
 - Maintaining Good Communication with Layout Engineer
 - Using Published Guidelines
 - Simulating Design before & after Layout
 - Using Device Features to Ensure High Signal Quality

