

3G Modem Chip Rate Processing Design

BTS Functions in 3G Basestation

3G Chip Rate Design

- 3G Chip Rate Solutions Need to Hit Certain Objectives:
 - Performance (122.8+ MHz)
 - Density (32+ Users per Board)
 - Low Deployment Costs
- Some Companies Migrate from FPGAs to ASICs to Reduce Device Cost, But
 - Difficult to Keep up with Rapidly Evolving Standards
 - Total Cost of ASIC Solutions Not Taken into Account
 - Non-Recurring Engineering Fees (NREs)
 - Development Time
 - Revenue Impact
- Case Study Shows Stratix[™] & HardCopy[™] Devices Meet All Objectives

- Gold Codes Random **Noise Codes**
- Good Cross-Correlation
- Good Auto-Correlation
- Gold Code Correlator **Compares Received** Samples from Users (Handsets) against Locally **Generated Gold Codes**

3G Chip-Rate Design Case Study in Stratix Devices

Case Study Assumptions

- System Parameters
 - 36 Users/Antenna
 - ~2 Mbps/Antenna
 - 8 Antennae
 - Oversampling: 2
 - Stratix PLD f_{MAX}: 138.24 MHz
- Correlator-Based Functions Consume Most Resources
 - Detailed Look at Following Functions
 - RACH Detection
 - Multipath Estimator

Key Stratix Features Used in BTS

Correlator Architecture

- Distributed Arithmetic
 - Based on Shift Register
 - Most Popular Architecture for Initial 3G Designs
- Two-Dimensional Correlator
 - Based on Block Memory

- Altera Has Done Extensive Research on Correlator Architecture
 - Two-Dimensional Correlator More Efficient for Typical BTS
 - Architecture Details & Comparisons
 - See Article Handout Available with Presentation
- Altera Correlator IP Used in This Case Study
 - Based on Two-Dimensional Correlator Architecture

Correlator Calculations Correlator IP Parameters Stratix Block Diagram Implementation

Serial Correlators Required

37,748,736

Calculating # of Correlators Required

Multipath System Parameters

Multipath Implementation Parameters

Chip-Rate Resources Required

Function	LEs	DSP Blocks	Memory Bits
RACH Detector	15,700	.5*	1,634,000
Multipath Estimator	49,800	.5*	305,000
Despreader	1,800	-	168,000
Spreader	2,600	-	144,000

*DSP Blocks Can be Used for Correlator Function

Stratix Performance Impact

Achieved 138.24 MHz with Multipath Estimator

- Significantly above 122.88 MHZ Requirement
- 138.24 MHz is 35% Improvement over APEX[™] II
 - Fixed Number of Users
 - 35% Smaller Multipath Estimator
- Another Way to Look at Performance Impact
 - 35% Increase in Performance Leads to 35% More Users for Fixed Resource (i.e., 1S30)

Related Stratix Reference Designs

- Direct Sequence Spread-Spectrum Reference Design
 - Targeted UMTS Specifications
 - 1 Antenna, 4 Users
 - Digital Downconverted/Upconverter
 - Chip-Rate Processing
- Multi-Channel Digital Downconverter Reference Design
 - Targeted UMTS Specifications
- QPSK Single-Channel Modern Reference Design
 - DSP Builder
 - Reed Solomon, Viterbi FEC

Chip Rate Processing Conclusion

- Stratix Devices Meet Objectives
 - ->= 122.88-MHz Performance (138.24 MHz)
 - ->= 32 Users/Board (36)
 - Low Cost per User in Stratix (3 1S30 Devices)
 - HardCopy[™] Devices Offer Further Cost Reduction
 - No Additional Development Engineering Involvement

Which is not included in Stratix Device?`

- 1. DSP Block
- 2. MegaRAM
- 3. PLL
- 4. ADC

