

Optimal Management of System Clock Networks

Introduction

- System Clock Management Is More Challenging
 - No Longer One Synchronous Clock per System or Card
 - Must Design Source-Synchronous or CDR Interfaces with Multiple Clock Domains
- Higher Clock Speeds Increase Importance of Timing & Jitter Analysis

Examine Communications Line Card Design Examples

- Identify & Solve Clocking Challenges
- Examine System Clocking Schemes
- Jitter Discussion

Line Card Example

FPGA Takes on Central Interface Role

Line Card Example (Con't)

FPGA Takes on Central Interface Role

Stratix Clocking Solutions

- **Stratix**
- Stratix[™] Device Incorporates up to 48 Clock Trees
- Implement FIFOs with TriMatrix[™] Memory

System Clock Schemes

Source-Synchronous Interface

- SFI-4 (SERDES-to-Framer Interface Level 4)
- HyperTransport[™] Technology
- Dynamic Phase Alignment (DPA)
 - SPI-4.2 (System Physical Interface Level 4.2)
- Clock-Data Recovery
 - XAUI (10 Gigabit Attachment Unit Interface)

Source-Synchronous Clocking

- Clock Signal Transmitted with Data
- Board Skew Reduces System Performance

Source-Synchronous Benefits

- Source-Synchronous Clocking Enables Data Transfer at High Speeds
 - Performance No Longer Limited by t_{CO},
 t_{PD} & t_{SU}
 - Maximum Performance Factors
 - Edge Rate of Driver
 - Skew between Data Signals & Clock Signals

Source-Synchronous Drawbacks

- Every Chip-to-Chip Data Transfer Introduces New Clock Domain
 - Receiver Must Manage Multiple Clock Domains
- Performance Affected by Board Skew
 - Skew Reduction Complicates Board Design

Source-Synchronous Interfaces

Transmission Line Type	Channel Data Rate	Clock
HyperTransport	1.6 Gbps	800 MHz
SFI-4	622 - 700+ MBPS	622 - 700+ MHz
SPI-4	622 - 832 MBPS	311 - 416 MHz
RapidIO	2.0 Gbps	1.0 GHz

Need for DPA

- In Clock-Forwarding System, Clock-Data Skew Reduces Performance
- SPI-4.2
 - Sample Timing Budget Allocates 150 ps for Skew: ~1 Inch
 - Meeting Skew Spec May Require Vias
 - Connector Adds More Skew

Dynamic Phase Alignment

- Receiver Self-Corrects for System Skew
 - Individual Adjustment for Each Channel
- May Align At Power-Up or Continuously
- Two Basic Approaches
 - Vary Delay of Data into Capture Register
 - Vary Delay/Phase of Clock Driving Capture Register
- Varying Clock Phase Is Best to Avoid PVT Effects

Stratix GX Solution

DPA Implemented In Hard Circuitry

Truly Dynamically Adjustable

Dynamic Phase Selector Chooses Appropriate Phase Based on Input Data

DPA Applications

- SPI 4.2 Specification Includes DPA Option
- Other Source-Synchronous Interfaces Can Benefit
 - HyperTransport
 - RapidIO
 - Proprietary

Clock Data Recovery (CDR)

- Reference Clock Is Used
- Trace Lengths Need Not Match
- Each Source & Destination May Have Individual Clock

Stratix GX CDR Implementation

Clock Encoded into Data Stream

PLL Recovers Clock from Data Transitions

Implements All Blocks Needed for XAUI PHY

CDR Benefits

Receiver Recovers Individual Clocks from Each Incoming Data Channel

- Each Channel Can Have Phase Variation
- Transmitters Can Operate on Multiple Crystals
 - Each Channel Can Have Limited Frequency Variation

CDR Drawbacks

- Encoding Schemes Used to Ensure Maximum Run Length
 - Transitions Required for Clock Recovery
 - Some Data Channel Bandwidth Used to Encode the Data
 - 3.125-Gbit Bandwidth Used for 2.50-Gbit Data
- Data Buffering Required to Accommodate Frequency Variation
- Channel-to-Channel Alignment Logic Required

CDR Application: XAUI

- 10 Gigabit Attachment Unit Interface (XAUI)
- IEEE Specification 802.3
- Versatile Standard:
 - Chip-to-Chip via PCB
 - Board-to-Board via Backplane

XAUI Implementation

Blue Boxes Ideally Implemented in Hard Logic in FPGA for Maximum Performance

4 Lanes at 3.125

PLL Jitter Characteristics

Jitter Classes

Random

- Probabilistic Timing Variations
- Caused by Random Thermal Effects

Deterministic

- Repeatable Timing Variations
- Caused by Specific Issues
 - Signal Modulation, Crosstalk

Total Jitter = Random + Deterministic

Jitter Transfer Definition

- Input Jitter May Be Reduced or Amplified
- Transfer Curve Shows Performance
 - > 0 dB: Amplification
 - < 0 dB: Reduction</p>
- Deterministic & Random Jitter Transfer May Be Different

Deterministic Jitter Transfer

- PLL Can Reduce Deterministic Jitter
- Delay-Locked Loop (DLL) Amplifies Deterministic Jitter

Random Jitter Transfer

PLL Reduces Random Jitter

PLL Input Clock

PLL Output Clock

Jitter Summary

- Jitter Limits System Performance
- Use PLL To Reduce Jitter & Enhance System Timing Margin

Summary

- Advanced Systems Present Difficult Clock-Management Challenges
- Use Source-Synchronous, DPA, or CDR Interfaces to Achieve High-System Data Rates
- Consider Jitter Effect On System

