20 YEARS of

Solutions for Designing High-Speed Systems

Agenda

- Evolution of Data Communications
- Data Integrity Challenges
- Signal Integrity & Board Design Challenges

History of Communications

History of Communications

- More Efficient Networks
 - Dramatically Reduces Number of Point-to-Point Connections
 - Central Office

Evolution of Data Transfer

- Faster Networks → More Problems to Solve
- Two Main Problems
 - Data Integrity
 - Signal Integrity
- Need for Added Complexity & Intelligence

Datacom Standards

- Evolution of Datacom Standards
 - ATM, Ethernet
- Ethernet: the Choice for 70% of Data Networks
 - First Developed in 1973 by DEC, Intel & Xerox
 - 10Base-T: 10 Mbps
 - 100Base-T: 100 Mbps (Fast Ethernet)
 - 1000Base-T: 1 Gbps (Gig-E)
- Gigabit Ethernet: Uses 4 Pairs of Twisted Pair at 250 Mbps
- 10 Gigabit Ethernet (XAUI): Uses 4 Pairs at 3.125 Gbps

Why Serial Data? Why Everywhere?

- Parallel Data Worked for Short Distances & Low Clock Rates
 - Skew & Timing Budget
 - Signal Count, Power, Connector Size, Pin Count, EMC Issues
- PCB Real Estate (Can't Just Go Wider)
- Parallel Data Buses Are EXPENSIVE!!
- Serialization Solves Most of These Problems

Trends

Communication

Data Integrity

- Added Overhead in the Data Stream
 - Clock & Data Recovery
 - Initialization of the Link
 - Data Encoding/Decoding
 - Word Boundary
 - Skew Compensation, Clock Domain Decoupling
 - Error Checking/Recovery
- Consider XAUI

XAUI Data Management

- Encode XGMII into 10 Bits/Lane At 3.125 Gbps
- Synchronization of Code Groups on Each Lane
 - Word Alignment ||K||
- Deskew of Received Code Groups across Lanes
 - Channel Aligner ||A||
- Clock Decoupling Across Domains
 - Rate Matching ||R||
- Conversion of XGMII Idle Control Characters to a Random Sequence of XAUI Control Characters

XAUI Implementation in Stratix GX

Case Study 1: Medical Instrumentation

Case Study 1: Medical Instrumentation

- Network of Medical Instruments in a Building
 - Master Slave Configuration, Ring Structure
 - Slave Instruments Transfer Data to Master Analysis Center
 - Data Transfer at 3.125 Gbps
 - 2 Redundant Channels

Case Study 1: Requirements

- Data Flows in One Direction
- Simple Flow Control & Initialization
 - Asynchronous System
 - Not Too Concerned about Dropped Packets
- Initialization
 - Master Sends Beacon Containing Address of Slave of Interest + ||XXXXX||
 - Once Link Initializes, Data Transfer Starts
 - Re-Initialize in Event of Failure

Case Study 1: Implementation

- Utilizes Stratix™ GX Device's Built-In XAUI Hard IP
 - Word Align, Channel Align, Rate Match, 8B10B
 Coding & Phase Compensation FIFO
- Use of a Simple Protocol
- Link Layer Implemented in the FPGA Logic Array of Master Node
- Non XAUI Network, But Uses the Built-in XAUI Hard IP

Case Study 2: Semiconductor Test Equipment

- Point-to-Point Communication
 - 2.5 Gbps Serial Data Rate across Backplane
 - Efficient Data Transfer: Low Latency, Low Overhead
 - Does Not Need Quad-Based Data Transfer
 - Cannot Use A Heavy Protocol

Case Study 2: Implementation

Case Study 2: Implementation

- Most of the XAUI Hard IP Not Necessary or Applicable
 - Rate Matching Implemented in the FPGA Logic Array
- Light Link Layer Incorporated in FPGA Logic Array
 - Cut-through Mode, CRC, Error Recovery
- Leverages Flexibility of FPGA Solution!

XAUI Protocol

- XAUI : 4 Lanes of Traffic → Overhead
 - Synchronization
 - Channel to Channel Skew
 - Rate Matching
 - Initialization
- Very Heavy Protocol (Lots of LEs)

Simple Serial Link Applications

- Packet or Streaming Data
- Chip-to-Chip Connectivity
- Board-to-Board Connectivity
- Shelf-to-Shelf Connectivity
- Backplane Communication
- Optical Connectivity

SerialLite Protocol

- A Very 'Lite' Protocol
- Highly Configurable
- Logic Element (LE) Usage Based on Complexity

Optimal for Most Systems
NOT Requiring Protocol Standard Compliance
(i.e., Interoperability to Existing Protocol)

SerialLite Features

- 1 16 Bonded Lanes
- 622 Mbps 3.125 Gbps per Lane
- Low Logic Usage, Protocol Overhead & Latency
- 16-Bit to 128-Bit Programmable Atlantic Interface
- Data & Nested Priority Packets
- Error Detection on All Packets & Optional CRC

SerialLite Protocol

- Availability
 - Single Lane Version: December 2003
 - Multi-Lane Complete Package: May 2004
- Open Standard: Freely Available for Everybody to Use
- Specification Available Today, Contact Altera Sales Representative for Details

Signal Integrity

Eye Diagram

Waveform Represents a Logical '1'

Waveform Represents a Logical '0'

Ideal Eye Diagram with No Noise

Eye Diagram with Voltage Noise

Eye Diagram with Timing Noise

Eye Diagram with Voltage & Timing Noise

Signal Integrity

- Bottom Line: Jitter = BAD!
- "Deviation from Ideal Timing of An Event"
- Sub-Optimal Board Design Degrades Otherwise Clean Data
- Some Common Issues
 - Bad Transmission Medium
 - Power Supply Integrity
 - Cross Talk
 - SSO Noise

Jitter Components

- Two Kinds of Jitter
 - Deterministic & Random

Total Jitter Constituents

Board Losses

- Skin Effect Causes
 Frequency Dependent
 Series Resistance on the
 Line
- Dielectric Absorption
 Causes Conductance of the Line to Vary with
 Frequency
- Both the Skin Effect & Dielectric Absorption Will Increase Attenuation At Higher Frequencies

Lossy Model

Skin Effect

- High Frequency Current Flows Primarily on the Surface of A Conductor
- Changing Current Distribution Causes Resistance to Increase As Function of Frequency

Dielectric Absorption

- High Frequency Signals Excite Molecules in the Insulator
 - Insulator Absorbs Some of the Signal's Kinetic Energy
 - Signal's Magnitude Is Attenuated
- Dielectric Absorption Often Specified in Terms of Loss Tangent, tan(δ)
- Lower $tan(\delta)$ = Less Losses

Material	εr at 1MHz	εr at 1GHz	tan(δ) at 1 GHz	Relative Cost
FR4	4.30	4.05	0.020	1.0
GETEK	4.15	4.00	0.015	1.1
Rogers 4350/4320	3.75	3.6	0.009	2.1
ARLON CLTE	3.15	3.05	0.004	6.8

Inter-Symbol Interference (ISI)

- Residual Voltages on Transmission Line that Can Interfere with Signals Traveling At Later Time
 - Reflections Off Impedance Discontinuities in the Transmission Line
 - Resonant Transmitter (LC Tank Circuit)
 - Inertial Delay & Hidden State (RC Circuit)
- ISI Degrades Signal Integrity of Transmission Line
 - Closes the Eye

Example Eye Diagrams

Eye Diagrams after 2", 22" & 36" of Backplane

Eye after 36" of FR4

What Can We Do About it?

- Programmable Pre-Emphasis!
- Boost High-Frequency Components to Reduce PDJ
 - When Switching Occurs the Differential Drive Is Increased
 - 6 Settings from 0% to 140% Based on v_{op} Setting

Pre-Emphasis Opens the Eye

- 40" Backplane
- v_{OD} of 400 mV
- Pre-Emphasis Setting = 4

Programmable Equalization

- Programmable Equalization Boosts Gain of Higher Frequencies At Receiver to Negate Effect of High-Frequency Losses
- Stratix GX Equalizer Can Be Programmed for Either 0", 10", 20", 30" or 40" of FR4 Trace
- Programmable Equalizer Can Boost Signals by Up to 9db

Equalizer Frequency Response

Equalizer Opens the Eye

- 40" Backplane
- v_{OD} of 400 mV
- Equalizer Setting = 40"

Effects of Improper Termination

The Ratio of Reflected Voltage Amplitude to the Incident Voltage Amplitude Defined As Reflection Coefficient, (Kr):

$$k_r = \frac{V_R}{V_I} = \frac{Z_T - Z_O}{Z_T + Z_O}$$

In General, Kr Is Determined by Telegrapher's Equation

Programmable On-Chip Termination

- Stratix GX Devices Offer Differential Programmable Termination of 100, 120, 150 Ohms for Both Receivers & Transmitters
- Termination for Channels Can Be Chosen Independently
- Tx & Rx Termination on Same Channel Chosen Independently

Programmable Drive Strength

Programmable VOD(p-p) Settings from 400 to 1,600 mV

Programmed Output Current (mA)	$V_{\text{OD(p-p)}}$ at 100 Ω	$V_{OD(p-p)}$ at 120 Ω	$V_{OD(p-p)}$ at 150 Ω
4	400	480	600
8	800	960	1,200
10	1,000	1,200	1,500
12	1,200	1,440	-
14	1,400	-	-
16	1,600	-	-

Board Design Issues

Board Design

- Not Your Average Low-Speed Board
- Very Observable Cause & Effects
- High-Speed Line Routing
- Return Paths
- Decoupling of Power Supply Noise
- Layer Stackup & Spacing

Board Layer Stackup

Layer Number	Layer Type	
1	Top Signal (50 Ohm)	
2	GND	
3	Signal (50 Ohm)	
4	Signal (50 Ohm)	
5	Power	
6	Signal (50 Ohm)	
7	Signal (50 Ohm)	
8	PLL GND	
9	Signal (50 Ohm)	
10	Signal (50 Ohm)	
11	Power	
12	Signal (50 Ohm)	
13	High-Speed Signal (100 Ohm)	
14	High-Speed GND	
15	High-Speed Signal (100 Ohm)	
16	Signal (50 ohm)	
17	Power	
18	Bottom Signal (50 ohm)	

High-Speed Transmission Lines

- Seamless Data Transfer: 50 Ohm Environment
- Remember Telegrapher's Equation?

$$k_r = \frac{V_R}{V_I} = \frac{Z_T - Z_O}{Z_T + Z_O}$$

Discontinuities

When Dealing with Discontinuities on the Board, Consider the Following Factors

Right-Angle Bends

Vias

Connectors

Improper Terminations

Vias

- Things to Worry about
 - Stub Is Created At the Via
 - Effect of Stubs:
 Inductance Is Small. Flux
 Lines Cancel At End of
 Via Due to the Whole
 Signal Reflecting
 - An Inductive Discontinuity
 Is Created on the Line
 Due to Improper Return
 Paths

Vias

- Cannot Avoid Vias
 - Routing Issues
 - Impedance Control on Top Layer
- Use As Much of the Via As Possible to Reduce Stub
- Back Drill or Blind Vias to Eliminate Stub, But Expensive
- Ground Vias around Signal Via, Control Inductance
- For 3.125-Gbps Signal Board Thicknesses of 150 Mils & above, Vias Play Big Role

Connectors

- Connectors on Transmission Paths Are Discontinuities
 - Based on Type of Connector They Can Be Either Capacitive or Inductive Discontinuity

Capacitive Dip Due to Connector

Capacitive Dip Due to Via

Decoupling

- Resonant Tanks Due to Parasitic Impedances
- Spikes Caused by Data
 Edges Induce Oscillations
 in Power Supply Voltages
 - Oscillations Over a Range of Frequencies
- Noisy Power Supply => Increased Jitter

Stratix GX Eye with Poor Decoupling

Decoupling

- Need to Filter Out the Noise Using Bypass Capacitors
 - Use a Range of Capacitance Values to Cover Frequency Range (Example: 0.01 μF to 200 μF)
- Increasing Influence of Parasitic Inductance with Frequency
- Need for Power-Ground Plane Capacitance
 - Capacitance Due to Parallel Plate Capacitance
 - Minimal Parasitic Resistance & Inductance

Parallel Plate Capacitance = $\varepsilon_0 \varepsilon_r (A/d)$

Decoupling Recommendations

- Locate the High Frequency Decoupling Capacitors As Close to the IC As Possible
- Bulk Capacitors Can be Placed Farther Away
- Use Power Ground Plane Capacitors As Much As Possible
- Use Low Inductance Capacitors

Stratix GX Eye with Effective Decoupling

Crosstalk

 Crosstalk Is Modeled by Super Positioning Mutual Inductance & Capacitance onto Existing Transmission Line Model

Segment of Lossless Transmission Line with Crosstalk Coupling Effects

Crosstalk & Termination

- How Can You Reduce Noise Caused By Crosstalk?
 - Crosstalk Is A Proportional Noise Source, So Increasing the Signal Swing Will Only Increase Amount of Coupling Noise
 - Both Near-End & Far-End of Line Needs to Be Terminated to Reduce Noise Caused By Crosstalk
 - Lines Spaced Sufficiently Apart; EM Simulations

SSO Noise

- Drivers Switch High to Low
 - Ground Bounce Occurs
 - Also Power Collapse Occurs
- Higher the Inductance, Higher the G B Voltage (V = L (di/dt))
- Higher the Inductance, More the Power Collapses
- More I/O Switching Requires More Regional Energy

Vcc

How to Reduce SSO Noise?

- Spread Out I/O Pins Being Used
 - Use Different Power Pins
- Use Differential Signaling → Rejects Common Mode Noise
- Slow Down the Slew Rate of Driver (dl/dt)
 - This Reduces V = L (dI/dt)
- Use Programmable Grounds/ Supply
 - Tie Unused I/O Pins to Ground / VDD

Stratix GX Applications Board

Signal Integrity Simulation Tools

- Chip-Level Simulations → HSPICE
- HSPICE Still the Most Reliable High-Speed Simulator
- Need to Accurately Model the Transmission Medium
 - Transmission Lines, Vias, Connectors
 - RLGC Parameters Imported to HSPICE

Signal Integrity Simulations

- EM Field Solvers Used to Extract Board Models
- Assign Conductor & Dielectric Materials
- Setup Solution Parameters
 - Inductance, Capacitance, Impedance & Admittance
- Solve Parameters
- Check Solution for Various Parameters
 - Characteristic Impedance, RLGC Values, Propagation Delay, Crosstalk, Skin Effect

Simulation Vs. Measurement

Conditions: Stratix GX Device Driving 20" of XAUI Backplane (Connectors & Daughter Card Included)

Simulation

Measurement

Altera's Support Structure

- Altera Provides Simulation Models
 - HSPICE, VHDL AMS, DML (Soon)
- Board Layout Guidelines with Sample Layout
- Characterization Reports
- Complete User Guide
- High-Speed Expert Customer Support

Summary

- Serial Communication Is the New Standard
- Many Protocols Available to Implement System
- Pre-Emphasis & Equalization Make Huge Impact
- Careful Design of Board for High-Speed Signaling Is Critical
- Many Tools Available to Ensure Successful Design Implementation

20 YEARS of

SOPC WORLD 2003