
Reuse-Oriented Model Year Architectures for Rapid Prototyping

G. Caracciolo and J. Pridmore
Lockheed Martin Advanced Technology Laboratories

Camden, NJ
gcaracci@atl.ge.com

Abstract
The Rapid Prototyping of Application-Specific Signal

Processors (RASSP) program is striving to change the way
embedded signal processor design is performed, providing
>4X improvements in time-to-market, cost, and design qual-
ity. These improvements will be achieved using a method-
ology that stresses hardware and software reuse in conjunc-
tion with Model Year Architectures that facilitate reusabil-
ity and upgradability through open interface standards. This
paper will describe a Model Year Architecture approach
for the development of cost-effective signal processors that
can be applied to a wide range of military and commercial
applications.

1: Introduction

The drivers for RASSP signal processor architecture defi-
nition result from the requirements imposed on signal pro-
cessors to meet changing mission-critical processing needs
and military requirements for long-term life cycle support.
Additionally, RASSP must address the full spectrum of sig-
nal processing applications, from low-cost commercial ap-
plications, such as cellular communications and HDTV (1-
10 processors), to very large military sensor systems, such
as shipboard radar systems (100 - 1000 processors). This
range of requirements imposes a formidable challenge in
defining an architectural approach that addresses low-cost
technology insertion, upgradabil-ity, and extensibility.

The Model Year Architecture (MYA) is being developed
to address these issues, promoting design upgrades and re-
use via standardized, open interfaces, while leveraging state-
of-the-art commercial technology developments. Designs
are performed using a concurrent engineering process that
facilitates continuous product improvements via iterative

©1995 IEEE. Reprinted with permission, from Proceedings of the
International Confernece on Acoustics, Speech, and Signal Processing;
Detroit, MI; May 9-12, 1995; pp. 2703-2706.

virtual prototypes, which can be easily retargeted to sup-
port a range of applications[1].

RASSP Model Year architectures must be supported by
library models to facilitate trade-offs and optimizations for
specific applications. The hardware and software elements
within the library are “encapsulated” by functional wrap-
pers, which add a level of abstraction to hide implementa-
tion details and facilitate efficient technology insertion. Thus,
the notion of Model Year upgrades is embodied in reuse
libraries and the methodology for their utilization.

2: Model Year Architecture Framework

The RASSP program supports the design of architectures
through a framework that provides a structured approach to
ensure that designs incorporate the following required Model
Year features: scalability, heterogeneity, open interfaces,
modular software, life cycle support, testability, and system
retrofit. [2]. The basic elements that comprise the MYA are
the Functional Architecture, Encapsulated Library Compo-
nents, and Design Guidelines and Constraints, as shown in
Figure 1. Synergism between the MYA framework and the
RASSP methodology is required, as all areas of the meth-
odology, including architecture development, hardware/soft-
ware codesign, reuse library management, hardware syn-
thesis, target software generation, and design for test are
impacted by the MYA framework.

The Functional Architecture defines the necessary com-
ponents and the manner in which their interfaces must be
defined to ensure that the design is upgradable and facili-
tates technology insertion. As such, the Functional Archi-
tecture is a starting point for developing solutions for an
application-specific set of problems, not a detailed
instantiation of an architecture. Specifically, the Functional
Architecture specifies a high-level starting point for per-
forming application-specific architecture selection; a stan-
dard approach for selecting and implementing standard, open
interfaces; and guidelines for efficient verification and test.
The Functional Architecture DOES NOT specify the topol-

Figure 1. Model Year Architecture framework.

AAAAA
AA

Functional Architecture Design Guidelines,
Constraints,
I / F Standards

Model Year Architecture Framework

Application
Notes

Encapsulated
Library
ElementsRASSP

Re-Use
Libraries

Modular Software
Architecture

System Application

- Radar - ...
- IRST - ...
- UW Acou. - ...

RASSP
Methodology

MYA Framework
Integrated
into RASSP
Methodology

Specific Instantiation of
Model Year Architecture

ogy or configuration of the signal processor architecture,
specific processor types, or system-level interface standards
(external to the signal processor).

The Functional Architecture concept is based on the use
of abstract architectural objects and standard functional inter-
faces at key points within a layered architecture. An impor-
tant aspect of the Functional Architecture is that application-
specific realizations of a signal processor are embodied in the
proper definition and use of Encapsulated Library Elements
within the reuse library. Encapsulation refers to additional
structure added to otherwise “raw” library elements to sup-
port the Functional Architecture and ensure library element
interoperability and technology independence to the maxi-
mum extent possible. Incorporated within the reuse libraries
are application notes that the designer can use to properly
apply and aggregate the individual hardware and software
components into a final processor product.

The MYA Framework also provides a set of Design
Guidelines and Constraints for general architectural devel-
opment, such as how to properly use the functional archi-
tecture framework, general use of encapsulated libraries,
and most importantly, procedures and templates to encap-
sulate new library components. These design guidelines and
constraints are incorporated into the RASSP design meth-
odology.

The Modular Software Architecture, shown in Figure 2,
simplifies developing high-performance, real-time DSP ap-

plications — allowing the de-
velopers to easily describe,
implement, and control signal
processing applications for
multiprocessor implementa-
tions. The architecture supports
the Model Year concept by pro-
viding a common Application
Programming Interface (API) to
the underlying real-time oper-
ating system services. This al-
lows a new hardware platform
with a new microkernel to
change for each model year
while maintaining the API. Sup-
port for the API is through the
RASSP Run-Time System
(RRTS), which provides the
services required for the control
and execution of multiple
graphs on a multi-processor

system. The RRTS and its support for the API forms the
essential component of software encapsulation for a pro-
cessor object.

The application layer is divided into two parts, similar to
the Processing Graph Method (PGM) developed by the
Naval Research Lab [3]. The first part of an application is
the Command Program, which provides response to exter-
nal control inputs, starting and stopping data flow graphs,
managing I/O devices, monitoring flow graph execution and
performance, starting other command programs, and set-
ting flow graph parameters. The Control Interface provides
services that implement these operations.

The second part of the application layer is the data flow
graphs (DFGs), implemented using a data flow language.
Services provided by the DFG interface are largely invis-

Figure 2. Modular Software Architecture.

Command Program(s) Data Flow Graph(s)

Control Interface

Data Flow
Interface

Target Processor
 Map

Target Processor
Primitive Libraries

Run-Time
System

Run-Time
System

Run-Time
System
Support

Run-Time
System
Support

Real-Time
POSIX

Real-Time
POSIX

Micro / Nanokernel

Application

Application
Programmer's

Interface

Run-Time
System

Micro /
Nanokernel

ible to the developer and include managing graph queues,
interprocessor communication, and scheduling. The RASSP
program will support static and dynamic scheduling para-
digms. The constructed flow graph will be converted into a
HOL such as C or Ada via autocode generation and will
contain calls to a standard set of domain primitives. A full
suite of tools is being developed on RASSP to support this
software architecture. All RASSP tools will be made com-
mercially available.

3: Applying the Model Year Architecture
Framework

3.1: Hardware architecture

Verification of a MYA signal processor is iteratively per-
formed throughout the codesign process, requiring the re-
use libraries to support models at various levels of hierar-
chy. Three levels of VHDL modeling hierarchy are currently
being developed and used in a series of benchmarking ex-
periments to define reuse library elements for RASSP:
• Performance/Uninterpreted/Architectural models pro-

vide timing-only behavior for processor nodes, buses/
interconnects, etc. to support high-level architectural
trade-offs (number and types of processors, type and to-
pology of network).

• Abstract Behavioral Models provide full functional be-
havior at the data output level with (potentially) an ab-
stract level of timing. This level includes both algorithm-
level and Instruction Set Architecture (ISA)-level mod-
els.

• Full-Functional and Interface models provide full func-
tionality at the signal level and timing fidelity at the clock
level. This includes Register Transfer Level and logic
models.

Through these models, the Functional Architecture con-
structs are supported. For example, Figure 3 illustrates an
application of a functional interface at the hardware level,
called a Standard Virtual Interface (SVI), for a construct
called a Reconfigurable Network Interface (RNI). The RNI
is divided into three logical elements: 1) local interface, 2)
external interface, and 3) bridge element. The local and ex-
ternal interfaces implement the specific protocols to the el-
ements being interconnected, in this example a HIgh speed
Parallel Port Interface (HIPPI) and VME interface. The
bridge element, which typically consists of a buffer memory,
and a controller implemented via custom logic (e.g. FPGA,
ASIC) or a programmable processor, performs the actual
bridging function. The buffer memory facilitates asynchro-
nous coupling and flow control between the two networks,
while the controller coordinates data transfers. The three
logical elements of the RNI are implemented as encapsu-

lated library elements that serve to isolate changes resulting
from upgrades. For example, the VME interface could be
replaced by another encapsulated interface, such as the Scal-
able Coherent Interconnect (SCI), with little or no impact
on the HIPPI hardware and software.

To refine details of various architectural constructs and
to determine their performance impact, a number of experi-
ments are ongoing, primarily through VHDL modeling and
simulations. For example, i860 ISA-level models [4] and
the Floating Point Application-Specific Processor 5
(FPASP5) vector processor model developed by Rome Labo-
ratory [5] are being used in conjunction with models for
Peripheral Component Interconnect (PCI) and HIPPI inter-
faces. These models are being used as vehicles for refining
the functional architecture concept by encapsulating the
models and demonstrating a plug-and-play capability among
the i860, FPASP5, and the different interface elements. Note
that the functional interface at the software level must also
be maintained, which will also be verified by executing in-
terface software on the simulation models.

3.2: Software architecture

Software development cannot be discussed without its
relationship to the architecture of the signal processor; in
fact, it is an important part of the application-specific archi-
tecture design process. The representation of architectural
elements as objects includes not only hardware representa-
tions in the form of VHDL models, but also behavior de-
fined by the software libraries associated with that hard-
ware. The software portion of architectural objects is handled

Figure 3. Functional Interface example applied
to a Reconfigurable Network Interface.

Buffer
Memory

Local
Interface

Processor
or Control
Logic

Interface
Logic

Interface
Logic

External
Interface

RNI Bridge
Element

Functional
Interfaces

RECONFIGURABLE
NETWORK
INTERFACE

Encapsulated
Library
Elements

External Network
(e.g., HIPPI)

Local Network
(e.g., VME)

SVI

SVI

Reqmts
Analysis

Executable
Functional

Spec

Arch
Indep
DFG

Allocated
Graph

Partitioned
SW

Graph

Partition
Code

Generation

Equivalent
Application

Graph

Load
Image

Command
Prog

DFG/Command
Functional
Simualtion

Target Code
Generation

Systems Architecture Detailed Design

Command
Program

Spec

Figure 4. RASSP graph-based software development scenario.

4: Conclusions

The RASSP program is applying a Model Year Archi-
tecture concept to the rapid prototyping of embedded signal
processors. This concept facilitates reusability and regular,
low-cost technology upgrades. This is accomplished through
the definition of a framework for developing open architec-
ture signal processors, which can be applied to a wide range
of military and commercial applications. The framework
relies heavily on Object-Oriented concepts to properly en-
capsulate the architectural reuse library components that are
modular and scalable. Ongoing work is refining the con-
cepts of the Model Year Architecture framework, including
the definition of architectural object classes, interfaces, and
attributes for the various elements. Additionally, benchmarks
are being developed to quantify hardware and software over-
head through virtual prototype examples to refine the en-
capsulation concept. The MYA will support an automated
reuse-based code generation process for heterogeneous mul-
tiprocessors.

References

1. Mark Richards, “The Rapid Prototyping of Application Spe-
cific Signal Processors (RASSP) Program: Overview and Ac-
complishments”, Proceedings of the First Annual RASSP Con-
ference, August 1994.

2. Gerald Caracciolo, “RASSP Model Year Architecture Work-
ing Document Version 1.0”, October 28, 1994.

3. Naval Research Laboratory, “Processing Graph Method Speci-
fication”, Version 1.0 11 Dec. 1987.

4. V.J. Madisetti, T. Egolf, S. Famorzadeh, L-R Dung, “Virtual
Prototyping of Embedded DSP Systems”, to appear in Proceed-
ings of IEEE ICASSP’95.

5. Richard Linderman, Ralph Kohler, “Designing a Wafer-Scale
Vector Processor Using VHDL”, GOMAC 1991 Digest of Pa-
pers. 1991 pp 65-68.

by the process shown in Figure 4. This process depicts the
progression of software generation from the requirements
to load image, with emphasis on the graph objects involved
and the general RASSP process in which they occur. It also
shows the parallel development and co-simulation of the
command program.

Architecture definition involves the creation and refine-
ment of the data flow graphs that drive both the architecture
design and the software generation for the signal processor.
The data flow graph(s) of the signal processing are devel-
oped and the nodes are allocated to either hardware or soft-
ware. Automated generation of the software partitions is per-
formed to provide executable threads that are to be run on
the DSPs. These autocoded partitions are combined into an
application graph which is functionally equivalent to the
original. The graphs are co-simulated with the command
program to ensure proper interaction.

The final step in the software development, which is the
production of the load image, occurs during detailed de-
sign. The software load image generation is an automatic
build process that is driven by the autocode generation re-
sults. The inputs to the process include the architectural
description, the detailed DFGs describing the processing,
the partitioning and mapping information, the autocode gen-
eration results, and the command program. The process is
controlled by a software build management function which
extracts the necessary information from the library and
manages the construction of all the downloadable code as
directed by the partitioning and mapping data.

This process is verified through virtual prototyping prior
to committing to an actual hardware build and is carried out at
several levels of hierarchy including performance level simu-
lations, ISA level simulations of key hardware and software
elements, and low-level simulation of hardware interfaces.

