
Abstract

Rapid prototyping of complex digital systems requires a
well defined design flow. A typical top-down design flow
starts with a construction of a performance model of the
system under design, which helps in making architectural
design decisions. Unless this model is used for later phases
of the design process, a model continuity problem exists.
This problem results from having to model and simulate
systems using different design environments for different
levels of design detail. Most of the levels of the design
process do not exhibit the model continuity problem.
However, this problem is prevalent between the
performance and functional modeling levels. The work
presented here allows for the true step-wise refinement of a
performance (uninterpreted) model into a functional or
behavioral (interpreted) model. The critical hurdle to the
realization of this methodology is the ability to do hybrid
modeling. Hybrid modeling is the capability of mixing
high-level performance constructs and functional
components in a common analysis environment. Hybrid
modeling supports the model refinement design flow by
providing an interface to bridge the information gap
between performance models and behavioral
implementations.

1. Introduction
The goal of automating the process of digital design has

produced many tools and methodologies for each stage of
the design process, from requirements generation through
fabrication. However, each methodology has concentrated
on a particular design task, and this concentration has led
to the fragmentation of the design process. Each design
group develops models of the system at a level of detail
appropriate to the group’s design objective. Traditionally,
these models take a variety of forms in a variety of
languages. Each model requires different CAD tools for
the simulation and analysis of the design. As a result, the
design teams generate several different models of the
system which may not interact with each other. The

development of multipledisjoint representations of a
common system under design (SUD) results in the model
continuity problem [1]. Thus, the many different models
representing the maturing design must be translated
between tools. This translation increases the cost, the
probability of errors, and thus design time.

Nowhere in the design cycle is the lack of model
continuity more apparent than between performance and
functional models. This discontinuity exists because the
structure of the models for performance analysis and for
functional design are very different [2]. Therefore, a
separate performance model is maintained for the
evolving design, rather than the design evolving from the
performance model.

When designing a complex digital system, it is
important to analyze the system’s performance in the
earliest possible stage of the design process. Typically, a
performance model of the system is constructed and
simulated for this purpose. A common approach is to
utilize the performance model to aid in the selection of an
architecture for the system. However, in today’s design
methods, the model is not used in later phases of the
design process.

One possible solution to the model continuity problem
is hybrid modeling. Hybrid modeling provides the
capability of simulating abstract performance constructs
and functional elements in a common simulation
environment. Thus, hybrid modeling supports the stepwise
refinement of abstract performance (uninterpreted) models
into behavioral (interpreted) models. Once a part of the
system is designed at the functional (or behavioral) level,
it can be incorporated into the performance model, and the
performance model is re-simulated in order to get a more
accurate estimation of system performance. By repeating
this process, element after element, a true stepwise
refinement design process is achieved. Section 2 presents
the hybrid modeling taxonomy that was jointly developed
by Honeywell Technology Center and the Center for
Semicustom Integrated Systems at the University of
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Virginia. The taxonomy uses uninterpreted system and
interpreted component attributes to categorize the
construction of different hybrid elements. In particular,
this section delineates those model attributes which
fundamentally affect the development and implementation
of the hybrid element interface. The linkage between
model attributes and hybrid interface structure is also
explained. The construction of different hybrid elements
for different subclasses defined by the developed
taxonomy is an ongoing research effort in both
institutions. Well defined solutions and techniques have
been developed and implemented for several subclasses
and are presented in Section 3. Potential solutions for
other subclasses that are under different stages of
development are briefly discussed. Section 4 illustrates the
hybrid modeling techniques via examples of system
models. Finally, conclusions are summarized briefly in
Section 5.

2. Hybrid Model Taxonomy
A hybrid model is a model that consists of both

interpreted and uninterpreted elements. A hybrid model,
therefore, provides a mechanism for the interchange of
information between the two types of elements. This
mechanism is called thehybrid interface and resolves the
discrepancies between the domains of interpretation.

2.1 Hybrid Interface Structure
The function of the interface is to handle all

interactions between the interpreted and uninterpreted
elements, or in other words, to convert information from
one domain to another. When information flows from an
uninterpreted domain to an interpreted domain, the
interface accepts tokens as input and generates data values
(bits, integers, etc.) that match the data type of the input
ports of the interpreted element. The interface has access
to the color fields of the input token(s). The interpreted
inputs can be considered as known values if they can be
determined from the information carried with the token, or
as random variables, depending on the level of abstraction
of the hybrid model.

When information flows from an interpreted domain to
an uninterpreted domain the interface accepts interpreted
data values and releases tokens as outputs. In addition to
data translation, this part of the interface has to provide the
timing mechanism for releasing tokens to an uninterpreted
domain. Typically, the number of interpreted element
outputs will exceed the number of tokens that should be
released. Thus, the interface must “bind” the interpreted
element outputs to tokens in terms of value as well as
timing information.

2.2 Hybrid Model Classes
This section defines an applicable taxonomy to

adequately describe hybrid models and their interfaces.
The technique for developing hybrid models depends on
the class of modeling problems being solved. The classes
of hybrid modeling are defined by those model attributes
which fundamentally alter the development and
implementation of the hybrid interface. The hybrid
modeling space is partitioned according to the following
characteristics:

1. The hybrid modelobjective
2. The timing and synchronization mechanism of the

model
3. Thenature of the interpreted element
4. The data transformationmode
5. Thedata type of the interpreted signals

Model Objective: Models are built with different
objectives. These objectives strongly affect the structure
and the functionality of the hybrid interface.For example,
a model developed to examine only the temporal
behaviors and constraints of the system will differ from a
model designed to explore various functional
implementations. The two major objectives are:

1. Performance analysis andtiming verification:
Analyze the performance of the system when one or

more components are modeled in the interpreted domain,
and verify by simulation, that the system does not violate
timing constraints.

2. Functional verification:
Verify by simulation that the function of the interpreted

component is acceptable, within the context of the system
model.

Performance analysis of a hybrid model, which results
in more realistic performance estimation, is affected by the
hybrid element in two different ways. The first one is due
to the fact that the delay through the interpreted
component itself is more realistic than the delay specified
in the uninterpreted domain. This difference in delay
affects the performance estimation of the system. The
second way in which a hybrid element can affect system
performance is due to some dependency of the rest of the
uninterpreted model on the interpreted component output
values. The interpreted component contains full
functionality and, therefore, the values on its output
signals may be used to alter the token flow through the
model. Therefore, the performance analysis objective and
the functional verification objective are related. Achieving
both secondary objectives by using a single interface and a
single technique is practical only if all input values to the
interpreted component are known from the information
within the tokens arriving from the uninterpreted model to
the interface.

If the objective of the hybrid model is performance
analysis only, the interface must detect when the
interpreted element processing is completed, and release



tokens to the rest of the model at the appropriate time. On
the other hand, if the objective is functional verification,
the interface operates on output values from the
interpreted domain as well as timing. It has to be
emphasized that this functional verification objective is
only in the context of the performance model, which
inherently does not include all system functionality.

Timing and Synchronization Mechanisms:The hybrid
modeling technique depends upon the timing mechanism
of the uninterpreted model. Thus, this attribute defines the
timing and synchronization mechanism across the
interface. The two types of system models are:
Synchronous andAsynchronous.

Synchronous models usually refers to models of
systems with a single global clock, i.e. the global clock
synchronizes all operations within the system, and the
model of such a system reflects this synchronization
scheme.   Asynchronous models usually refers to models
of self-timed systems, in other words different parts of the
systems are unclocked, or operate with different clocks or
systems constructed of subsystems that communicate in an
asynchronous fashion.

The functionality of the interface depends on the timing
mechanism, especially in the case of multiple input token
paths to the interface. Since the interface activates the
interpreted element, multiple input token paths may be
treated in several manners. For example, tokens may have
to arrive at all input signals in order for activation or, the
first token that arrives may activate the interpreted block.
Hence, the interfacing technique is strongly influenced by
the synchronization of the model.

Interpreted element: The hybrid modeling technique
also strongly depends upon the type of the interpreted
component that is introduced into the performance model.
It is natural to partition interpreted hardware descriptions
into combinational elements and sequential elements,
however, research has suggested the following partition:

1. Combinational Elements:
 Unclocked (with no states) elements, e.g. constructed

of gates only.
2. Sequential Control Elements (SCE):
Clocked elements (with states) that are used for

controlling data flow, e.g. a control unit or a controller
3. Sequential Data-Flow Elements (SDE):
Elements that include data-path elementsand clocked

elements that control the data flow, e.g. control unit and
data-path.

For combinational interpreted elements, the outputs
depend on the current inputs only and, therefore, the
interface acts independently for each input token. On the
other hand, for sequential interpreted elements, the
interface must account for states, as well as inputs.

The major reason for partitioning the sequential
elements into sequential data-flow and sequential control
elements is based on the timing attributes of these
elements. A sequential control element (SCE) is a cycle-
based machine, i.e. control input values are read every
cycle and control output values (that control a data-path)
are generated every cycle. On the other hand, sequential
data-flow elements (SDE) have data inputs and may have
some control inputs but the output data is usually
generated several cycles later. This difference in timing
attribute will dictate a different technique for hybrid
modeling.

Data Transformation Mode: The mode defines the data
transformation/interface mechanism. When information is
flowing from an uninterpreted domain to an interpreted
domain, the values for the interpreted input signals can be
generated in four different modes which are not mutually
exclusive: Translate mode, Stochastic mode, External
mode and State-based mode.

The translate mode simply converts data carried with
tokens arriving to the interface. This mode is practical
only if the tokens in the uninterpreted model contain
sufficient information in order to generate interpreted
inputs. The process of extracting data from color fields,
interpreting them, and mapping onto the input signals of
the functional model. Since the token must remain as
small as possible for simulation efficiency reasons, the
translate mode is somewhat restricted.

The stochastic mode allows the user to define and
implement probabilistic generation of interface data. This
mode operates in a manner similar to the performance
modeling stochastic input stimulation. This capability is
integrated such that ranges, distributions, etc. can be
associated with other sources of data such as fields in the
token or external information.

The external information mode supplies external data
in the form of files to the interface. In this mode, data is
extracted from files similar to how the translate mode
extracts information from a performance token. The
capability to filter, interpret, and manipulate external file
data is integrated in this mode.

The state-based mode maintains internal state to handle
complex interface interaction. In this mode, all the
information to generate the functional or token-based
input must be available at the interface. However, the
state-based mode maintains internal state information, as
well as a mechanism for traversing that state and
generating appropriate interactions with the rest of the
model.

Data Type: The data type defines the interpreted data
generated or received in the hybrid interface. The data
type depends on the interpreted element introduced to the



hybrid model as well as on the modeling level of this
element. It includes straight forward types such as bits,
integer, reals, as well as more complex data types such as
characters and enumerated data types.

2.3 Interfacing Scenarios
In addition to the attributes described above, the hybrid

taxonomy consists of several possible interfacing
scenarios. The interfacing scenarios define the data flow
across domains of interpretation. To support both top-
down and bottom-up design processes, four interfacing
scenarios are possible and the potential usage of hybrid
interface in these scenarios is described in Figure 1.

The scenarios are distinguishable by their environment.
Several scenarios transfer data across a single boundary
(U/I , I/U) and other move data from one domain and back
(U/I/U , I/U/I). The U/I/U and I/U/I scenarios show
insertion of a model of a different level into an existing
model. In such a case, the inserted model is enclosed
within an interface for both inputs and outputs. In the U/I
and I/U scenarios, the overall model data flow is converted
to another level.

During a typical top-down design process, the U/I/U
scenario is very likely since an uninterpreted performance
model is constructed followed by the insertion of various
interpreted elements. This common scenario enables to
preserve token information across the hybrid element.
Whenever the interpreted block is surrounded by
uninterpreted elements, it is regarded as a U/I/U
interfacing scenario.

3. Hybrid Modeling Techniques
The hybrid taxonomy described above was jointly

developed by Honeywell Technology Center (HTC) and
the Center for Semicustom Integrated Systems (CSIS) at
the University of Virginia (UVA), and it is common to
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Figure 1 : Interfacing Scenarios

both institutes with few minor exceptions. In general, the
hybrid modeling techniques being developed are based on
the same general methodology, but the actual
implementations are different because of the differences in
the performance modeling tools developed by both
organizations.

The differences between the Honeywell Performance
Modeling Library (PML) and the UVa Advanced Design
Environment Prototype Tool (ADEPT) can be traced to
two different factors. First, the Honeywell PML is
intended to develop performance models of systems that
include more functional information than performance
models developed in ADEPT. This inclusion of more
functional information has the potential to ease the token
to value translation process in hybrid modeling. This
difference can be somewhat attributed to the different
requirements to which the libraries were designed. The
ADEPT library elements have a direct mapping to Petri
Net components which allows more formal analysis
techniques. The PML elements do not have that
requirement.

Second, the actual implementation of tokens and token
flow in the PML and ADEPT is different. For example, in
PML, the tokens include routing information that is used
to direct the flow of tokens over bus signals with multiple
sources and/or sinks. In ADEPT, each signal has only one
source and one sink, so routing information is not
required. Some of the differences in implementation can
be traced to the different levels of detail that are intended
to be expressed in each tool as described above.

3.1 UVA techniques and future directions
Hybrid modeling is supported by the ADEPT

environment, developed at the University of Virginia. In
the ADEPT environment, a system model is constructed
by interconnecting a collection ofADEPT modules. The
modules model the information flow, both data and
control, through a system. Each ADEPT module is
implemented in VHDL and has a corresponding colored
Petri Net representation, which is based on Jensen’s CPN
model [3]. The modules communicate by exchanging
tokens, which represent the presence of information, using
a uniform, well defined handshaking protocol [4]. Higher
level modules can be constructed from the basic set of
ADEPT modules. In addition, custom modules can be
incorporated into a system model as long as the
handshaking protocol is adhered to. The entire set of
ADEPT modules is divided into six categories, of which
the hybrid modules category is one of them. The hybrid
modules support the development of the hybrid interface
for hybrid models. A more detailed description of the
entire ADEPT module set can be found in [5].

The hybrid modeling techniques implemented so far



are concentrated on the performance analysis and timing
verification objective. Therefore, a more realistic estimate
of the system’s performance is achieved by simulating the
hybrid model as well as verifying timing constraints of
interpreted elements. A comprehensive technique for
models with combinational interpreted elements was
developed and implemented within ADEPT. This
technique includes the handling of the case of known
inputs (translate and external modes of data
transformation) as well as the case of unknown inputs
[6][7].   For the latter, a statistic-based algorithms were
developed and implemented to detect longest possible
delays of combinational interpreted elements during
hybrid model simulation.

The current effort in hybrid modeling is concentrated
on models with sequential interpreted elements, given that
the simulation objective is performance analysis. The
technique for the case of known inputs is being developed.
For sequential interpreted elements with unknown inputs,
the technique is substantially different from that developed
for combinational interpreted elements. This situation is
the result of the fact that sequential elements maintain
state, and system performance is determined by clock
cycles as well as propagation delays. The research in
hybrid modeling is mainly focused on this issue as well as
developing techniques for the functional verification
objective.

3.2 HTC techniques and future directions
Honeywell has developed several hybrid modeling

mechanisms during the development of the PML. The
processor model exhibits a form of synchronous interface
with its software scheduler. The functional memory port of
the processor model is a form of an external mode for
hybrid interface mechanisms. The example described later
in this paper is also a specialized hybrid interface. The
focus of the Honeywell effort for RASSP hybrid modeling
is to generalize these interfaces into a robust library.
Honeywell intends to develop a set of building blocks
which users can implement hybrid interfaces.

4. Examples
Typical examples of hybrid models and their usefulness

are presented. The first one is from the UVA environment
while the second is implemented in the Honeywell
environment.

4.1 Hybrid Model of a Stream Memory Controller
A complex example employing these hybrid modeling

techniques can be found in the design of a stream memory
controller (SMC)[8]. The purpose of the SMC controller is
to assist in obtaining peak memory bandwidth for vector
processes by reordering the requested processor accesses
in order to create a larger ratio of page hits when
communicating with memory. A hardware implementation
of a stream memory controller is under development at the
University of Virginia. This particular implementation of
the controller reorders the memory requests by organizing
them in a FIFO buffer. This particular SMC is designed to
interface to the Intel i860xp microprocessor. The SMC
was selected as a hybrid example because the system is
currently under development at UVA and information
regarding design changes can be easily obtained and
incorporated into the model.

The SMC was modeled using ADEPT at an
uninterpreted level. The SMC design was partitioned into
four sections, shown in Figure 2: the processor, the
processor bus interface (PBI), the bank and fifo control

Figure 2 : Partitioned SMC Model
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mechanism, and the page-mode memory. The PBI
partition is of special interest for this model because it is
the sole means of communication between the processor
and the FIFO buffers. The PBI, which is shown in Figure
3, consists of a two-stage address pipeline network which
supplies the FIFO buffer units with read and write
information. The second stage of the PBI is a synchronous
state-machine which is responsible for performing the
read and write accesses to the FIFO buffers. This
particular element has been designed using the Cascade[9]
synthesis tool. As a result of this Cascade design, a VHDL
behavioral representation of the state machine exists. This
particular interpreted element was inserted into the
uninterpreted model to form a hybrid model of the SMC.

This example demonstrates the hybrid modeling
techniques for a synchronous system with sequential
interpreted element. The objective of this model is
performance analysis and timing verification. In this
example, all interpreted inputs are known from the
information carried with the tokens and the translate mode
is the implemented mechanism for data transformation.

Figure 4 shows the hybrid element configuration for the
PBI state machine. The hybrid element is a synchronous
sequential hybrid element using known inputs.The U/I
module maps the uninterpreted tokens to interpreted
inputs and applies the explicitly determined values to the
interpreted inputs. The interpreted component is the
VHDL behavioral description of the PBI state machine.
The I/U component maps the output values generated at
the outputs of the interpreted component to tokens and
releases these tokens back into the uninterpreted model.
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The SMC hybrid model has been simulated to ensure
proper operation and to study its performance in terms of
achieving peak memory bandwidth. The results of this
analysis can be found in Figure 5. The performance results
showed that the hybrid model of the system found a
slightly lower percentage of peak memory bandwidth for
the SMC. This result is due to the fact that the behavioral
description of the PBI state machine is more accurate than
in the uninterpreted model. The lower performance
metrics are resultant of a more detailed handshaking
procedure between the PBI state machine and the FIFO
buffers.This refinement of the synchronous interface for
the PBI state machine resulted in a slower, but more
realistic model of the design.

 In this particular example, the advantage of using
hybrid modeling techniques to help guide model
refinement is demonstrated through the hybrid model’s
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improved modeling of the PBI interface synchronization.
By having the ability to guide model refinement through
hybrid modeling techniques, design inconsistencies and
performance bottlenecks can be identified early in the
design process.

4.2  Hybrid Model of a 3-D Rendering Pipeline
 Honeywell is actively involved in the definition of the

next generation display processors for military and
commercial cockpits. One such architecture, the Cockpit
Display Generator (CDG) [13][14], provides the graphical
and video processing power needed to drive future high
resolution display devices and generate more natural
panoramic 3-D formats. The CDG will provide
multichannel, high performance 2-D and 3-D graphics,
and real-time video manipulation. The area of greatest
challenge in this design was the 3-D rendering pipeline. A
modified version of the Pixel-Planes [10][11] was chosen
for the pipeline. This SIMD approach gives each pixel
memory its own computational hardware. A key element
in this architecture is the Enhanced Memory Chip (EMC)
[12]. The EMC is essentially a memory that is enhanced
with tightly coupled computational logic on the same chip.
The logic is arranged in a SIMD architecture that can
efficiently perform the linear expression evaluation that is
common in the lowest level graphic rasterization.

 The performance/functional hybrid model of the CDG
3-D rendering pipeline is shown in Figure 6. Several
processors in the 3-D pipeline are modeled using the
performance processor model from the Honeywell PML.
This model, described in another paper in this proceedings
[15], provides the capability of hosting functional tasks on
an abstract characterized model of a processor. Detailed
algorithms of the various steps in the 3-D pipeline were
described and modeled. Different processor
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characterizations were used to determine the appropriate
processor for each step in the pipeline. Initially the EMC
function was modeled in this manner. However since this
is a key function of the pipeline, and requires a custom
solution, a more detailed simulation was required to verify
the configuration and functionality required. The
capability to perform this analysis is central to a hardware/
software co-design activity.

 The Solid State Electronics Directorate at Wright Labs
designed and fabricated an EMC [12] using a 0.35 micron
CMOS process. The RTL/gate level model of this chip
provided a detailed view of this key component. An array
of EMCs are required for a complete graphics system.
Honeywell performed simulations on various architectures
to determine the appropriate EMC configurations and
control mechanisms. These simulations will help
determine the requirements by ELED for the next version
of the EMC which can then be used in the CDG
implementation. These simulation experiments on the
functional EMC will help decide the number of on-board
ALU’s (64, 32, or 16) for the chip. Two primary
characteristics are being examined: 1) test the number of
ALU’s that are enabled per triangle, and 2) test the number
of bits of on-board memory that are used per triangle. Two
test cases for exercising these models have been
developed: a data set that has a very consistent set of
triangles sizes (top down God’s Eye view) and a data set
that has a range of triangle sizes (low grazing angle).
These two test cases establish a mix of triangles that
represent the two extremes associated with rendering
terrain data perspective views. These simulations are
being done using a functional model of the EMC which
was developed by Honeywell and verified against the RTL
model. This model allowed rapid simulations of the 3-D
pipeline/EMC hybrid model.



 This functional/performance model example highlights
two hybrid modeling cases; the software scheduler-
processor model interface and the functional memory port.
Both of these cases allow detailed functional models to
interface with a performance model of a processor. This
allows rapid, detailed analysis of a portion of the design
while keeping a known element, the processor, at an
abstract level. Specifically in the CDG/EMC case, the
hybrid model allowed rapid verification of detailed chip
requirements at an early point in the design process.

5. Conclusions
Hybrid modeling provides the capability of simulating

several levels of abstraction and interpretation in a single
model; starting from the uninterpreted level used for
performance analysis down to behavioral or functional
levels (interpreted) used in the design and implementation
process. Thus, hybrid modeling supports a top-down
design flow by providing the capability for stepwise
refinement of performance models into behavioral models.
Its advantage is in verifying design decisions at an early
stage of the design process, and it enables the designers to
asses the impact of different component implementations.
By having this ability, potential performance bottlenecks
can be identified early in the design.

Hybrid modeling remains an ongoing research area in
both the Center for Semicustom Integrated Systems, at the
University of Virginia and Honeywell Technology Center.
This paper has presented a framework, along with the
current implementation of the modeling environment, for
the development of hybrid models. These results represent
a significant advancement to the state of the art in hybrid
modeling technology.
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