
Automated Generation of Accurate VLSI Behavioral Processor

Models for Simulation and Synthesis

Yong-kyu Jung 1, Vijay K. Madisetti 1, John W. Hines 2

1 ECE - Georgia Tech, Atlanta, GA 30332-0250
2 U.S. Air Force, WL/ELED Wright Patterson AFB, OH 45433-7319

Proceedings of Second Annual ARPA RASSP Conference, Crystal City, VA, July 25-27, 1995.

Abstract

A new process for automating the creation of Full-
Behavioral (FBM) and Instruction Set Architecture
(ISA) models in VHDL for complex processors and
components is described, with results from the automa-
tion of a PowerPC 601 described in some detail. A
number of advantages to this approach are described
together with its impact on the hardware/software code-
sign and system prototyping processes.1

1 Introduction

The Rapid Prototyping of Application-Speci�c Sig-
nal Processors (RASSP) project of the US Depart-
ment of Defense (ARPA and Tri-Services) targets a
4X improvement in the design, prototyping, manu-
facturing, and support processes (relative to current
practice). As per E/F current practice (1993), the
prototyping time from system requirements de�nition
to production and deployment, of multiboard signal
processors, is between 37 and 73 months [8]. Out
of this time, 25 � 49 months is devoted to detailed
hardware/software (HW/SW) design and integration
(with 10� 24 months devoted to the latter task of in-
tegration). With the utilization of a promising top-
down hardware-less codesign methodology based on
full-behavioral VHDL models of HW/SW components,
it appears feasible that the HW/SW integration time
could be reduced to a few weeks (1 � 2 months) [10].
Potential show-stoppers lie in the limited availability of
high quality VHDL behavioral models of components
(timing and function). In addition, the time to build
a single model of a complex RISC processor (such as
i860XP) is approximately a man-year. We describe a
mechanism via which full-behavioral models of com-
plex components can be automatically generated in
VHDL from published information available in data
manuals. This method could also be used in the itera-
tive design synthesis of custom pipelined processors for
domain/application-speci�c applications.

1This research was supported by Advanced Research Projects

Agency (ARPA), Department of Defense, under the RASSP pro-

gram, 1994-1997.

HW/SW
Partitioning &

Allocation

Interface
Design

HW Design

+ Build
SW Design
+ Code

HW/SW
Integration

L_1 L_2

HW/SW
Partitioning &
Allocation

+ Model

Interface

Model
Design &

Integration

+ SW
HW Models

(i) Pre-RASSP - Hardware Fabrication/Manufacture
in the design loops L_1 and L-2

System
Build

SW-only
Environment
(VHDL)

(ii) Post-RASSP - Hardware Fabrication/Manufacture
eliminated from design loops L_1 and L_2.

reworkrework

L_2L_1

Reuse
HW/SW
Libraries

SW DesignHW Design

Fig 1. HW/SW codesign - (i) Current practice
(1993-1994) and (ii) True HW/SW codesign. Note
elimination of hardware fabrication, assembly and
board/system level manufacture from the design
loops. Software can be tested on virtual hardware
that is also concurrently being designed. Savings
in time and cost, capability for customer input,
and concurrent life-cycle support and upgrade plan-
ning is facilitated. Shaded areas imply hardware
(board/MCM level).

2 HW/SW codesign practice

The Educator/Facilitator current practice (1993)
model for signal processor design is presented in de-
tail in [8] in this proceedings. The various stages in a
\waterfall"-type process ow are demarcated together
with time ranges (min, max) for each stage. The time
lines have also been validated via communications with
the industrial entities involved in large system design
and implementations. In this paper, we focus on the
speci�c tasks of hardware, software, and interface de-
sign and their eventual integration.

2.1 Whither true codesign ?

True HW/SW codesign allows both hardware and
software to be designed within a common framework,
and simulated together before being fabricated. Cur-
rent practice attempts to automate this process via
HW/SW/Interface partitioning followed by three in-
dividual paths to HW, SW and Interface design and
implementation, respectively (as shown in Figure 1).
A drawback with this approach is that software can
be designed and tested only if a hardware platform
(at board and rack levels) is available. The latter is
time- and cost-consuming (even if it utilized FPGA
technology or HW modelers). It must be understood
that the software is not just application-speci�c soft-
ware, but also control, diagnostic and test software.
Often, control, diagnostic, and test software requires
an order of magnitude larger man-hour e�ort than does
application software [8]. Conventional hardware soft-
ware co-design methods assign a token interest in the
issue of software required for control, diagnostic and
test purposes, and attempt to catch all integration is-
sues under the term \interface". The approach shown
in Figure 1(ii) represents a \true" HW/SW codesign
wherein software models (in a HDL such as VHDL) of
HW are provided to the SW developers and the entire
software is designed and tested and integrated with the
HW models long before any hardware is fabricated or
manufactured. Thus, the design loops L1 and L2 are
quick, and require no hardware fabrication & engineer-
ing cost, and in addition provide capability for com-
plete system design using a process known as virtual
prototyping [1,5,10,11].

Virtual prototyping in top-down VHDL based de-
sign involves transition of the design through a num-
ber of abstraction levels, each of which represents an
executable speci�cation of the signal processor to be
designed. At the network performance-level of vir-
tual prototyping very little of the functionality (if any)
of the target system is modeled, and the focus is on
the utilization and e�ciency of the SW implementa-
tion on a candidate HW architecture. Since this de-
sign takes place at a high level of abstraction, sin-
gle events can represent functional blocks of a few
tens to a few thousands of HOL instructions. The
loss of functional detail is compensated by high sim-
ulation speeds (100,000-1,000,000 instructions/second)
that can assist in the rapid architectural evaluation
and selection. When limited functionality is added to
performance models, additional estimates can be ob-
tained about HW/SW functionality and timing (at the

coarse level of wall-clock seconds) of prototype. Simu-
lation speeds are reduced consequently (10,000-20,000
instructions/second). At an even higher accuracy of
system modeling and simulation, with bit� true func-
tional and clock � cycle level timing resolution, the
use of ISAs and FBMs is recommended. This increase
in accuracy is traded-o� with slower simulation speeds
(10-1000 instructions/second).

2.2 Showstoppers

The assumption, of course, is that libraries of full-
behavioral HW models in SW are available, accurate,
and interoperable, and that simulation times can be
kept manageable. VHDL can be used with advantage
in this true HW/SW codesign philosophy | one that
embraces a hardware-less system design. Recent expe-
rience with hardware-less HW/SW codesign has shown
that it is e�cient, often reducing time for HW/SW in-
tegration to a matter of weeks, and also allows rapid
upgrades, together with savings in cost [9]. Once vir-
tual prototyping is completed, it is expected that that
pathway through which a �eld prototype can be man-
ufactured, supported and upgraded will be straighfor-
ward.

3 Modeling for HW/SW codesign

Several classes of models have been found suitable
for HW/SW codesign. When emphasizing HW/SW
integration, two classes have been found particulary
useful - ISAs and FBMs. We will utilize the RASSP
taxonomy [6] to de�ne these two classes.
(1) Instruction Set Architecture (ISA) Models | An
ISA model describes the function of the complete in-
struction set recognized by a given programamble pro-
cessor, along with (and as operating on) externally
known register set and memory/input-output space.
An ISA model will execute any machine program for
that processor and give exactly the same results as that
processor (e.g., bit-true) as long as the initial states
are the same for both simulation and the real system.
Port registers, if modeled, are also bit-true. Instruc-
tions span multiple clock cycle, and ISA models need
not contain any internal structural implementation in-
formation.
(2) Full-Behavioral Models (FBMs) | A FBM (also
known as full-functional model [10]) is a processor
model that exhibits all documented timing and func-
tionality of the modeled component, without specifying
internal structural implementation details. Thus, the
full-behavioral model is more detailed than the ISA
model in that it includes clock-edge timing informa-
tion in addition to functionality. A number of full-
behavioral processor models are available fromGeorgia
Tech's RASSP Techbase e�ort [5]. The issue of creating
ISA and FBMs will be examined next.

3.1 Populating VHDL model libraries

While complete or incomplete gate-level VHDL
models are sometimes available from vendors, and are

accurate for use as ISAs and FBMs, a number of lim-
itations exist | (1) gate-level models are very slow
in terms of simulation times, (2) reveal con�dential
component design (intellectual property) information,
and (3) HW/SW codesign assumes that the hardware
component is continuously being designed (e.g., chang-
ing instruction set, optimized behavior, etc), and thus
the gate-level description does not exist. Thus, the
focus is on creation of behavioral models of complex
parts. Commercial Instruction-set simulators (ISS),
which can provide debug information for processors,
have limited applicability within a VHDL-based en-
vironment (without wrappers and loss in e�ciency)
where multiple models at varying levels of detail are
co-simulated during the top-down design process. In
addition, they do not allow redesign of the hardware
component, a trend that is increasing �nding favor
in application-speci�c markets (e.g., use of core-based
functional design of DSP ASICs [2]).

The current approach to model development is best
described in [3,4,10]. All these approaches model the
internal and external microarchitecture of the compo-
nent behaviorally frommanufactured-supplied data (or
via abstraction to higher levels of functional and tim-
ing information from gate-level descriptions). This is
a manual, time consuming (in man-years), and error-
prone (i.e., veri�cation) operation, and often equiva-
lent to designing the component all over again. While
we have used this approach, and continue to use this
approach in developing ISAs and FBM models, an in-
vestigation into automated generation of these models
was long overdue.

3.2 A new approach - autogeneration

An alternative approach to developing ISAs and
FBMs that is automated is described in Figure 2. The
processor being modeled (or designed) is described by
parametrized generalized time-stationary [2] pipelines
(single or multi-), associated memories/registers, and
a generalized controller. The user-de�ned or vendor-
supplied information on the instruction set, architec-
tural constraints (hazards, timing), are captured in
terms of processor-speci�c input data �les. These para-
metric input data �les then are automatically con-
verted to lookup tables (LUTs). The LUTs are utilized
by the AMG to generate the control (timing) and func-
tional information from the input application instruc-
tion stream. We have used this approach to synthesize
behavioral models of the PowerPC 601 RISC processor
and an implementation will be described in the next
section.

3.3 A new approach - iterative synthesis

The approach described in Figure 3 describes the
process ow for automating the iterative synthesis of
application-speci�c processors. Here the instruction-
set of a programmable processor can itself be cus-
tomized and iteratively designed during the HW/SW
codesign process. The application drives the itera-
tive instruction-set and architecture codesign (which
are captured from input data �les as LUTs) by the

Processor 1
(Data manual)

Processor 2
(Data manual)

Lookup Tables
Generated Generated

Multiple multistage pipelines

MEM

Cache

REG
Output

Files

Lookup Tables

Controller

Application

AMG

Code

To Verification

Fig 2. Automated Processor Model Generation
(AMG) for Simulation

AMG. The controller, pipeline, and associated logic of
the AMG are then simulated to measure performance
on the target application. After optimization of the
instruction set and timing, the AMG may be synthe-
sized using commercial RTL-level or behavioral syn-
thesis tools. Application-speci�c functional libraries
can also be used with advantage when combined with
VHDL and the emerging VITAL standards for sign-o�
quality timing simulation. Future papers will discuss
and document the approach of Figure 3.

4 Automated Model Generator - AMG

The automated model generator (AMG) is an ISA
or FBM model that accepts the application instruc-
tion stream and processor-speci�c data in the form of
input tables, that are processed internally to provide
all documented functional and timing characteristics
as output �les. The same AMG can be reused for cre-
ating models of multiple versions of the same chip, or
independent families of processors.

4.1 Structure of the AMG

The automated ISA model generator consists of six
major \blocks", as described below (See Figure 4).

1. Pipeline: A single pipeline for a RISC processor
consists of the following six stages | (1) Instruc-
tion Fetch (IF), (2) Instruction Dispatch (IDP),
(3) Instruction Decode (ID), (4) Instruction Exe-
cute (IE), (5) Cache Access (CA), and (6) Write
back (WB). These stages were implemented as
procedures within a VHDL process description of
the pipeline.

2. Memory Block (MB): The MB consists of an
instruction queue (IQ), instruction and data mem-
ories (IM & DM), and a cache (CACHE).

Lookup Tables
Generated

Multiple multistage pipelines

MEM

Cache

REG
Output

FilesController

Application

Code

Optimization

Target Instruction
Set Design

Domain

Features

Synthesis

AMG

Tool

To Fab

Functional
Libraries

(VITAL/Struct.)

Fig 3. Automated Processor Model Generation
(AMG) for Iterative Synthesis

3. Data Register Block (DRB): The DRB con-
sists of a number of register arrays (DER,
ECR, CWR), including a general purpose register
(GPR) to allow storage for resolution of pipeline
data hazards. A number of 32-by-32 bit data reg-
ister arrays are also reserved for the user.

4. Control Register Block (CRB): The CRB
consists of register arrays (CR, HIR (hazard in-
formation registers), SCR (system control regis-
ters), HDR (hazard destination registers)) to con-
trol various stages of the pipeline.

5. System Generating Logic (SGL) Block: The
SGL converts speci�c input data (i.e., in form of
tables.dat) from manufacturer or instruction-set
designer into Lookup Tables (LUTs) that can be
used by the AMG. Thus, information about di�er-
ing processors can be converted to a standardized
internal representation that can then be utilized by
the AMG in generating instructional function and
timing. The six automatically generated internal
LUTs are opcode lookup table (OPLUT) contain-
ing opcodes and extended opcodes for user-de�ned
instructions, a decode lookup table (DCLUT) con-
taining information on the bit length of the opcode
and other instruction �elds, an execute lookup ta-
ble (EXLUT) that stores information for the exe-
cution latencies and the identi�cation of every in-
struction to map into an executable location in the
IE, a hazard lookup table (HLUT) containing in-
formation on data hazards of registers and mem-
ory, an extended opcode lookup table (EOLUT)
consisting of data related to extended opcodes,
and a system generation lookup table (SGLUT)

IQ_SIZE.DAT

NUM_INST_TABLE.DAT

HAZARD.DAT

CONTROL.DAT

INST_TABLE.DAT

INST_TYPE_TABLE.DAT

IQ

SGL

OPLUT

DCLUT

EXLUT

IM CACHE

DM

IF

IDP

ID

IE

CA

WB

- manages the IQ, IFB & IM
- fetches instruction (inst.)

IFB

WWB

IEB

IDB

- manages the IFB & IDB
- dispatch inst.

- manages the IDB, IEB & DER
- decodes inst. & serves hazard.

OPLUT

DCLUT

instruction

decoded inst.

- manages the IEB, WBB,
- executes inst., connects the CA,
 & serves hazard.

decoded inst.

EXLUTEXECUTE

exe. results

CR

ID_BLOCK

IE_BLOCK

PIPELINE

MB

EXE_RESULT.OUT

EOLUT

HLUT

INST_MEM.in

EOLUT

HLUT

HLUT

EOLUT

SGLUT

Fig 4. The Anatomy of Georgia Tech's Automated
VHDL Model Generator (AMG). Hardware ven-
dor or designer-supplied data is obtained as *.DAT,
which are then automatically converted to lookup
tables (LUTs) by the AMG. The output �le is the
behavior of the hardware executing the software
(functional values and timing).

that is used by the SGL. It may be iterated that
the SGL automatically creates these LUTs based
on manufacturer or designer-supplied processor or
instruction-set information.

6. Stage Bu�er Block (SBB): The SBB consists
of bu�ers for stages of the pipeline (e.g., IFB, IDB,
WBB, IWB, etc).

4.2 Operation of the AMG

We now discuss the operation of the AMG as follows:

1. Step 1 (Fetch and Dispatch): An instruction
if fetched from the IM and brought to the IQ and
CA in the pipeline. The IF fetches the instruction
from the IQ and stores it in the IFB. The IDP then
initiates the dispatch of the instruction from the
IFB and translates it into the IDB. In order to de-
code this instruction, the opcode or the extended
opcode is �rst extracted from the instruction. The
instruction type is then docoded from the informa-
tion available in the lookup table OPLUT.

2. Step 2 (Decode): The ID then obtains the
extended opcode information from the EOLUT
and the instruction format from the DCLUT us-
ing the decoded instruction type information as a
key. In the �nal step at the ID, the instruction is
dissassembled, the information disseminated, and
valid instruction �elds are stored in the IEB. After
completing the decode operation, the ID checks
for data dependency on the current instruction.
The information stored in DER is utilized for this
check, and the information is propagated to the
hazard registers, HIR and HDR, with operate in
conjunction with the HLUT. Operands for the op-
eration are put in the IE bu�er (IEB)

3. Step 3 (Execute): The IE begins operation if
the IEB is nonempty. The IE updates the GPR
and the DER, and picks out appropriate infor-
mation from the EXLUT | i.e., instruction ex-
ecution latencies, location of procedures, require-
ments for cache access for executing the function
or process, and then executes the procedure (the
AMG currently supports upto 1024 user-de�ned
operations). The result is then stored in the WBB
or sent to the CA (if cache access is needed). The
HIR and HDR are then updated to allow hazard
resolution for the subsequent instructions in the
pipeline.

4. Step 4 (Cache Access and Write Back): The
CA then reads/writes data from/to the cache in
case of a cache hit, or the DM in case of a cache
miss. The WB updates the CWR through the
DER or ECR before writeback. If the instruc-
tion is processed by CA, the CWR is updated by
the ECR, else, it is updated by the DER (resolv-
ing hazards between IE and CA). The result is
then written to the GPR and all hazard conditions
caused by the current instructions are void. The
WB also generates the output �le with the neces-
sary user-speci�ed information on execution times
and functional results required from the model.

4K

32 bits

SCR2

3

HDR 3

SGLUT 11
OPLUT 1K

4K(integer)

32

512

HLUT
DCLUT

ECR
CWR

DER
GPR

32

HIR

32
(integer)(integer)

EOLUT

EXLUT 1K

Fig 5. Register and Memory Data Structures

4.3 Implementation of the AMG

To test the AMG we �rst implemented the AMG in
VHDL, and successfully modelled a subset of the ISA of
the PowerPC 601 with a single pipeline. More recently,
the AMG has been generalized to model multiple con-
current pipelines and other processors (e.g., i860 and
ADSP 21060).

In one of our PowerPC 601 variations of the AMG,
that is fully operational, each memory within the MB
was implemented as a 32 bit-vector array (same as the
instruction length). The IQ IM, and DM are 64-by-
32, 8K-by-32, and 20K-by-32 arrays, respectively. The
SBB was implemented as four bu�ers, one of which is
the IEB that is a 256-integer variable bu�er for main-
taining latency and executing function information in
the IE stage, the others maintain bit-vector and one
integer type variable for maintaining the latencies of
other pipeline stages. Figure 5 summarizes the sizes of
the other register and memory arrays utilized in our im-
plementation. Note that the user of the AMG can tailor
the pipeline to suit his/her implementation speci�ca-
tions, and can also utilize more than one pipeline within
the AMG (i.e., the PowerPC 601 has three pipelines |
integer, oating, and branch). The AMG currently has
been implemented in about 5K lines of uncommented
VHDL source code.

4.4 Performance of the AMG - PowerPC
601

Figure 6 describes the performance of a PowerPC
601 model generated by the AMG. The input source
code is described in Test Bench A, and was input to the
AMG. The AMG then generates the function and tim-
ing behavior via output �les (shown also in Figure 6),
and via VHDL signals (that are displayed on a VHDL

simulator spreadsheet in Figure 7). Tables 1 and 2
in Figure 6 describe the detailed clock-cycle resolved
operations of the pipeline for the PowerPC 601. The
exact timing for the completion of each instructions
are also shown. In Figure 7, for instance, the multi-
ply is described in the decode bu�er as 7c4118d6, and
has a latency of 5 clock cycles, which are successively
decremented as shown on the signal INST.EXE.CYC.1.
Typical instructions executed per second on the virtual
model generated by an unoptimized AMG were in the
order of 500�1000 for single pipelines, and less for mul-
tiple pipelines (10 � 200). For a 1000-instruction test
bench, the execution times on a SPARC-10 workstation
were; multiple pipeline AMG (242.95 sec), PowerPC
with multiple pipelines (235.55 sec), Single pipeline
AMG (18.0 sec), PowerPC with single pipeline (1.45
sec). The time required to generate a model is limited
only by the time it required to enter the input.DAT
tables from the manufacturer's data sheets (or in the
case of iterative synthesis, from the designer), and took
about a man-month for the PowerPC. The AMG con-
sists of about 5K lines of VHDL source code and uti-
lized the Vantage VHDL Spreadsheet at Georgia Tech's
DSP Laboratory.

5 Summary and Conclusions

Models have been shown to very useful in the sys-
tem prototyping process, often reducing HW/SW de-
sign and integrations costs by a factor of four or more.
The contributions of this paper are as follows -

1. A new method for automated generation of full-
behavioral and ISA models for complex pipelined
processors has been proposed. We believe that this
is the �rst such proposal and its implementation.

2. A new method for iterative synthesis, where the
instruction-set of a processor can be customized
to the application software, utilizing true hard-
ware/software codesign is proposed.

3. Successful demonstration of the proposed method
for automated generation, using the PowerPC 601
as an example. Our results show that the speeds in
instructions per second range between 500�100 for
auto-generated single pipelines and 5�100 for mul-
tiple pipelines, and compare well to manually gen-
erated behavioral models. The time required for
model development is, however, much shorter, re-
quiring 2�3 man-months for an ISA model (with-
out interface timing), as opposed to 1 � 2 man-
years for the manual method of model generation.

Further optimization of the automated model gen-
eration process is an ongoing investigation.

Acknowledgements

Thanks to M. Rubeiz of Wright Patterson Labs
(USAF) for carefully reviewing the manuscript.

References

[1] M. Richards, \The Rapid Pro-
totyping of Application-Speci�c Signal Processors
Program," Proc. of First Annual RASSP Confer-
ence, August 1994.

[2] V. K. Madisetti, VLSI Digital Signal Processors,
IEEE Press, Piscataway, NJ, May 1995.

[3] Z. Navabi, \Using VHDL for Modeling and Design
of Processing Units," Proc. of 5th Annual IEEE
ASIC Conference and Exhibit, pp. 315-326, 1992.

[4] L. Maliniak, \Process Builds Accurate VLSI Behav-
ioral Models," Electronic Design, pp. 63-70, May 3,
1993.

[5] V. Madisetti, T. Egolf, S. Famorzadeh, L-R. Dung,
\Virtual Prototyping of Embedded DSP Systems,"
Proc. of IEEE ICASSP 95.

[6] C. Hein, T. Carpenter, P. Kalutkiewicz, V. Madis-
etti, \RASSP VHDL Modeling Terminology and
Taxononomy - Revision 1.0," Proc. of Second An-
nual ARPA RASSP Conference, July 1995.

[7] C. Myers, R. Dreiling, \VHDL Modeling for Signal
Processor Development," Proc. of IEEE ICASSP
95.

[8] V. Madisetti, J. Corley, G. Shaw \RASSP: Current
Practice (1993) E/F Model and Challenges," Proc.
of ARPA Second RASSP Conference, July 1995.

[9] The RASSP Information Server - WWW URL
http://rassp.scra.org.

[10] T. Egolf, V. Madisetti, S. Famorzadeh, P. Ka-
lutkiewicz, \Experiences with VHDL Models of
COTS RISC Processors in Virtual Prototyping for
Complex System Synthesis," Proceedings VHDL
International Users' Forum (VIUF), Spring 1995.

[11] C. Hein, D. Naso�, `VHDL-Based Performance
Modeling and Virtual Prototyping," Proc. of Sec-
ond Annual ARPA RASSP Conference, July 1995.

Description of the Instruction Timing & Test Bench

TABLE 1. Instruction Timings for the Test Bench ‘A’

Addr. of Inst. Inst.Name rD/BI rS/rA/rB
1 2 3 4 5 6 7 8 9 1

0
1
1

1
2

1
3

~ 4
6

4
7

4
8

4
9

5
0

5
1

5
2

5
3

5
4

~ 8
7

8
8

8
9

9
0

9
1

9
2

0 “add” rD=1 0 / 2 / 3 f d ew

1 “mulx” rD=2 0 / 1 / 3 f d e e e e ew

2 “ldx” rD=3 2 / 0 / 0 f d e cw

3 “add” rD=2 0 / 3 / 3 f . d ew

4 “divx” rD=1 0 / 2 / 3 f d e e ~ e ew

5 “strx” 3 / 1 / 2 f . . ~ . d e cw

6 “brx” BI=3 ~ f d . e w

7

3

“addi”

“add”

rD=2

rD=1

0 / 2 / 0

0 / 3 / 3

~ f . >

f d e w

4 “divx” rD=1 0 / 2 / 3 ~ f d e ~ e ew

5 “strx” 3 / 1 / 2 ~ f . ~ . d e cw

6 “brx” BI=3 ~ ~ f d . e w

TABLE 2. Characteristic of the instructions

Instruction name Opcode Extended opcode Instruction Type Latencies

add 31 248 1 1

addi 14 0 2 1

ldx 34 0 3 1

strx 31 215 4 1

mulx 31 107 1 5

divx 31 331 1 36

brx 18 0 5 1

TABLE 3. Description of the instruction fields

Instruction Type rD rS r1 r2 BI C1 Eop SIM UIM RC AA C2 RSV

1 5 0 5 5 0 1 9 0 0 1 0 0 0

2 5 0 5 0 0 0 0 16 0 0 0 0 0

3 5 0 5 0 0 0 0 0 16 0 0 0 0

4 0 5 5 6 0 0 9 0 0 0 0 0 1

5 0 0 0 0 24 0 0 0 0 0 1 1 0

“ f” : Instruction fetch & dispatch stage
“d”: // decode stage
“e” : // execute stage
“c”: // cache access stage
“w”: // writeback stage
“>”: purge Instruction on the pipeline
“ .” : stall on the pipeline

rD : Destination Register
rS : Source Register
r1 : working Register 1
r2 : working Register 2
BI : immediate field for branch
C1 : control bit 1
Eop : extended opcode
SIM : signed immediate field
UIM : unsigned immediate field
RC : record bit
AA : absolute address bit
C2 : control bit 2
RSV : reserved bits

TEST_BENCH ‘A’ (INPUT)
8

0

01111100001000100001100111110000
01111100010000010001100011010110
10001000011000100000000000001111
01111100010000110001100111110000
01111100001000100001101010010110
01111100011000010001000110101110
01001000000000000000000000001100
00111000010000110001100110011110

TEST_BENCH ‘A’ (OUTPUT)
 4 :end of cycle time
 9 : //
11 : //
12 : //
48 : //
50 : //
51 : //
53 : //
89 : //
91 : //
92 : //

:end addr.+1
 of inst. stream
:start addr.
 of inst. stream
:“add”, rD=1
:“mulx”, rD=2
:“ldx”, rD=3
:“add”, rD=2
:“divx”, rD=1
:“strx”, rD=1
:“brx”, BI=3
“addi”, rD=2

 “add”, rD=1
 “mulx” rD=2
 “ldx”, rD=3
 “add”, rD=2
 “divx”, rD=1
“strx”, rD=1
 “brx”, BI=3
 “add”, rD=2
 “divx”, rD=1
“strx”, rD=1
 “brx”, BI=3

Instruction Cycles

Fig 6. Results from the AMG-generated PowerPC
601 model

Fig 7. VHDL simulations of the AMG-generated
PowerPC 601 model using testbench of Figure 6
con�rm the behavior of the processor.

