
Version 1.3
January 1998

The ERC32 GNU Cross-Compiler System

Jiri Gaisler
European Space Research and Technology Centre (ESA/ESTEC)

2 ERC32 GNU Cross-Compiler system

l

m

and this

batim
e

ove con-
European Space Agency

jgais@ws.estec.esa.n

The ERC32 GNU cross-compiler syste

Copyright 1998 European Space Agency.

Permission is granted to make and distribute verbatim copies of this manual provided the copyright notice
permission notice are preserved on all copies.

Permission is granted to copy and distribute modified versions of this manual under the conditions for ver
copying, provided also that the entire resulting derived work is distributed under the terms of a permission notic
identical to this one.

Permission is granted to copy and distribute translations of this manual into another language, under the ab
ditions for modified versions.

Introduction 3

r the fol-

f
ists of
1 Introduction

1.1 General

This document describes the ERC32 GNU cross-compiler system version 1.3. Discussions are provided fo
lowing topics:

• contents and directory structure of ERC32CCS

• compiling and linking ERC32 applications

• usage of SIS and MKPROM

• debugging ERC32 application with GDB/SIS

The ERC32 GNU cross-compiler system is a multi-platform development system based on the GNU family ofreely
available tools with additional ‘point’ tools developed by Cygnus, OAR and ESTEC. The ERC32CCS cons
the following packages:

• EGCS/GCC C/C++ compiler

• GNAT Ada95 compiler

• GNU binary utilities

• RTEMS C/C++ real-time kernel

• Newlib standalone C-library

• SIS ERC32 simulator

• GDB debugger with ERC32 remote debugging monitor (rdbmon)

• DDD graphical front-end for GDB

• MKPROM boot-prom builder

1.2 News in version 1.3

This version of ERC32CCS contains the following changes with respect to 1.2:

• DDD version 2.2, including new documentation

• Modified assembler to compensate newly discovered FPU rev.B bugs

• Egcs-1.0 C/C++ compiler

• RTEMS 4.0 beta release with simplified compile procedure

• Experimental Ada95 compiler based on gnat-3.10 and rtems-4.0

• Re-compiled floating-point library (libm.a) to incorporate the FPU fixes

• GDB version 4.16.1 with gnat support

• SIS version 2.7.6

4 ERC32 GNU Cross-Compiler system

 at ftp:/
) and
found at

-

d

r se

contact
ws.es-
2 Installation and directory structure

2.1 Obtaining ERC32CCS

ERC32CCS is only distributed via anonymous ftp. The primary home of ERC32CCS is the ESTEC ftp-server
/ftp.estec.esa.nl/pub/ws/wsd/erc32/erc32ccs. Two platforms are supported: SUN Sparcstaion (SunOS & Solaris
PC/Linux. Sources for rdbmon and mkprom are provided with ERC32CCS, the remaining sources can be
the usual GNU sites.

2.2 Installation

The ERC32CCS directory tree is compiled to reside in /usr/local/erc32 . After obtaining the compressed tar
file with the binary distribution, un-compress and un-tar it in a suitable location - if this is not /usr/local/erc32
then a link have to be created to point to the location of the ERC32CCS directory. The distribution can be installe
with the following command:

gunzip -c erc32ccs-1.3.tar.gz | tar xf -

This will create the erc32 directory in the current directory. The erc32 contains the following sub-directories:

bin executables
doc documentation
include host includes
lib host libraries
man man pages
rtems rtems libraries
rtemsnp rtems libraries (no posix)
sparc-rtems target libraries (ERC32)
src various sources

Documentation for the various packages can be found in doc , while unix-style man-pages are in man. Note that the
directory structure for ERC32CCS-1.3 has changed and is not compatible with ERC32CCS-1.2.

2.3 Environment

ERC32CCS does not longer require any environment variables to be set; just add /usr/local/erc32/bin to youarch
path.

2.4 Support

For technical support regarding GNU tools, contact Cygnus at http://www.cygnus.com/. For RTEMS support
OAR at http://www.oarcorp.com/. For SIS and MkProm support, contact J.Gaisler (ESTEC) at jgais@
tec.esa.nl.

Using ERC32CCS 5
3 Using ERC32CCS

3.1 ERC32CCS tools

The following tools are included in ERC32CCS:

ddd graphic X11 front-end to GDB
fcheck utility to check for FPU rev.B bugs
mkprom boot-prom builder
protoize GNU protoize utility
sis ERC32 simulator
sis64 ERC32 simulator (with 64-bit time)
sparc-rtems-ar library archiver
sparc-rtems-as modified cross-assembler (FPU rev.B fixes)
sparc-rtems-c++ C++ cross-compiler
sparc-rtems-c++filt utility to demangle C++ symbols
sparc-rtems-g++ same as sparc-rtems-c++
sparc-rtems-gasp assembler pre-processor
sparc-rtems-gcc C/C++ cross-compiler
sparc-rtems-gdb debugger with ERC32 simulator and remote target interface
sparc-rtems-gdb64 debugger with ERC32 simulator (64-bit time)
sparc-rtems-gnatcmd Utility to print all GNAT command switches
sparc-rtems-gnatmake Ada make utility
sparc-rtems-gnatbind Ada binder
sparc-rtems-gnatf Ada syntax checker and cross-reference generator
sparc-rtems-gnatprep Ada pre-processor
sparc-rtems-gnatbl Ada bind and link
sparc-rtems-gnatkr Ada file name kruncher
sparc-rtems-gnatpsta Utility to print the Standard package
sparc-rtems-gnatchop Ada source code splitter
sparc-rtems-gnatlink Ada linker
sparc-rtems-gnatpsys Utility to display the System package
sparc-rtems-gnatchp Ada source code splitter
sparc-rtems-gnatls Ada library lister
sparc-rtems-ld GNU linker
sparc-rtems-nm utility to print symbol table
sparc-rtems-objcopy utility to convert between binary formats
sparc-rtems-objdump utility to dump various parts of executables
sparc-rtems-ranlib library sorter
sparc-rtems-size utility to display segment sizes
sparc-rtems-strings utility to dump strings from executables
sparc-rtems-strip utility to remove symbol table
unprotoize GNU unprotoize utility

6 ERC32 GNU Cross-Compiler system

dded hy-

al-time
e same
3.2 Documentation

An extensive set of documentation for all tools can be found in doc and man. The following documents are provid-
ed:

as.bdf Using as - the GNU assembler
bfd.pdf Libbfd - the binary file description
binutils.pdf The GNU binary utilities
cpp.pdf The C Preprocessor
ddd.pdf DDD - The Data Display Debugger
gcc.pdf Using and porting GCC
gdb.pdf Debugging with GDB
gnat_rm.pdf GNAT reference manual
gnat_ug.pdf GNAT User’s guide
ld.pdf Using ld - the GNU linker
rtems_dev.pdf RTEMS Development environment guide
rtems_relnotes.pdf RTEMS Release notes
rtems_sparc.pdf RTEMS SPARC Applications supplement
rtems_user.pdf RTEMS C User’s manual (this is the one you want!)
sis.pdf SIS - SPARC instruction set simulator manual
sparcv7.pdf SPARC V7 Instruction set manual

Data sheets for the ERC32 chip-set are also provided:

mecspec.pdf MEC rev.A Device specification
tsc961e.pdf TSC961 Integer Unit User’s manual
tsc962e.pdf TSC962 Floating-point Unit user’s manual
sysover.pdf ERC32 System overview

The documents are all provided in PDF format, with searchable indexes. The GNU documents have embe
per-links and searchable document text. A free PDF viewer (‘acrobat’) can be down-loaded from Adobe (http://
www.adobe.com/).

3.3 Development flow

The compilation and debugging of an ERC32-based applications is done in the following steps:

1. Compile and link program with gcc

2. Debug program in standalone simulator (SIS) or with gdb

3. Debug program on remote target with gdb

4. Create boot-prom for a standalone application

The ERC32CCS-1.3 supports three types of applications; ordinary sequential C-programs, multi-tasking re
C--programs based on the RTEMS kernel and Ada-95 programs. Compiling and linking is done in much th
manner as with the host-based gcc and GNAT.

Using ERC32CCS 7

d link-
d, the

-

provided
e, add

text op-

lidated
m/).

ddress

er, and
er of

d
or a sys-
3.4 RTEMS applications

The primary application type for ERC32CCS is now RTEMS programs. As of ERC32CCS-1.3, compiling an
ing of RTEMS applications is greatly simplified. The usage of a RTEMS specific makefile is no longer require
gcc compiler driver supplies all necessary paths and libraries. To compile and link a RTEMS application, use ‘sparc
rtems-gcc’:

sparc-rtems-gcc -g -O3 rtems-hello.c -o rtems-hello.exe

The various compilation switches are explained in the gcc manual (gcc.pdf) and the man-pages. RTEMS is
in two versions; with and without POSIX threads interface. If applications are written with the POSIX interfac
the -posix switch during compilation and linking:

sparc-rtems-gcc -posix -g -O3 posix-app.c -o posix-app.exe

The default load address is start of RAM, i.e. 0x2000000. Any load address can be specified through the -T
tion (see gcc manual).

Extensive documentation is provided on RTEMS in doc/rtems_user.pdf.

3.5 Compiling sequential C-programs

Ordinary sequential C programs are still supported by providing the -nortems switch to the compiler driver:

sparc-rtems-gcc -nortems -g -O2 hello.c -o hello.exe

3.6 Compiling Ada95 programs

Compiling and linking an Ada95 program is easiest done through gnatmake:

sparc-rtems-gnatmake -g -O3 -gnatp dais.adb

Individual units can be compiled through gcc:

sparc-rtems-gcc -c -g -O3 -gnatp dais.adb

If linking is done through gnatbl, the -posix and -qgnat flags has to be added:

sparc-rtems-gnatbl -posix -qgnat -g -O3 -gnatp dais.adb

For details on how to use gnat, see the GNAT User’s Manual (gnat_us.pdf) and GNAT Reference Manual
(gnat_rm.pdf). NOTE: the gnat compiler is only provided for testing purposes, and is not by any means va
or guaranteed. A commercial, validated version is available from Ada Core Technology (http://www.gnat.co

The gnat compiler is configured for a maximum of 20 tasks and 30 mutexes. If you need a different configuration,
go to the erc32/src/libio directory, edit gnatinit.c and do a ’make install’.

3.7 Making boot-proms

Both sequential C-programs and RTEMS applications are linked to run from beginning of ram at a
0x2000000. To make a boot-prom that will run on a standalone target, use the mkprom utility. This will create a
compressed boot image that will load the application to the beginning of ram, initiate various MEC regist
finally start the application. mkprom will set all target dependent parameters, such as memory sizes, numb
memory banks, waitstates, baudrate, and system clock. The applications do not set these parameters themselves, an
thus do not need to relinked for different board architectures. The the example below creates a boot-prom f

8 ERC32 GNU Cross-Compiler system

r more

m via the

x7e to
eeds to
s been
ddress

at:

e

ssembler

ug which
tem with 1 Mbyte RAM, one waitstate during write, 3 waitstates for rom access, and 12 MHz system clock. Fo
details see the mkprom manual

mkprom -ramsz 0x100000 -ramws 1 -romws 3 hello.exe -freq 12 hello.srec

To let the real-time clock generate the correct time base, the loader passes board frequency to the progra
memory location at %tbr[0x7e0]. When running programs on top of sparcmon without using mkprom, this is not
done and the default frequency of 14 MHz is assumed. This can be changed by setting the first word in trap 0
the value of the clock frequency (in MHz) after the program has been loaded but before it is started. This n
be done only to get the time correct, the run-time system will not modify the UART baudrate if it already ha
set. The example below sets the clock frequency to 10 MHz for a program that is linked to run from a
0x2020000:

monitor> ex -l 20207e0
0x020207e0: 0x91d02000 ? a

3.8 Simple examples

Following example compiles the famous ‘hello world’ program and creates a boot-prom in SRECORD form

tellus > sparc-rtems-gcc -nortems -g -O2 hello.c -o hello
tellus > mkprom hello -o hello.exe
tellus> sparc-rtems-objcopy -v -O srec hello.exe hello.srec
copy from prom.out(a.out-sunos-big) to hello.srec(srec)
tellus>

An Ada application compiled through gnatmake:

tellus > sparc-rtems-gnatmake -g -O3 -gnatp dais.adb
sparc-rtems-gcc -c -g -O3 -gnatp dais.adb
sparc-rtems-gnatbind -aO./ -I- -r -x dais.ali
sparc-rtems-gnatlink -g -posix -qgnat dais.ali
tellus >sparc-rtems-size dais
text data bss dec hex filename
204720 6392 32268 243380 3b6b4 dais

Several example C, C++ and Ada program can be found in src/examples . The RTEMS validation tests can b
found in src/examples/RTEMS .

3.9 FPU rev.B bugs

The FPU rev.B have a bug that will make certain lddf/stdf sequences fail. The compiler only rarely emits these se-
quences. The occurrence of such sequence can be check with the provided fcheck program. A modified a
is also provided which will automatically insert NOPs in the failing sequences to correct this problem. The modified
assembler also emits NOPs between ldf/fpop sequences with dependencies to circumvent a second FPU b
is only occur if waitstates are used.

Execution and debugging 9

 on gdb
.

 by Mk-

alt the IU
lated:
4 Execution and debugging

The applications built by ERC32CCS can be executed in four different ways; on the standalone simulator,
with integrated simulator, on a remote target connected to gdb and on a standalone target board from prom

4.1 Standalone simulator

The standalone simulator can run both application produced by the compiler and srecord images produced
Prom. The following example shows how the ‘hello world’ program is run:

tellus > sis hello

 SIS - SPARC instruction simulator 2.7.6, copyright Jiri Gaisler 1995-1998
 Bug-reports to jgais@ws.estec.esa.nl

loading hello:
section .text at 0x02000000 (26032 bytes)
section .data at 0x020065b0 (1304 bytes)
section .bss at 0x02006ac8 (40 bytes)(not loaded)
serial port A on stdin/stdout
sis> go
Hello world
IU in error mode (257)
 2567 02000800 91d02000 ta 0
sis>

Note that the program was started from address 0x2000000, the default start address. Programs always h
after they have terminated, that is why the IU goes into error mode. The boot-prom image can also be simu

tellus > sparc-rtems-sis hello.srec

SIS - SPARC instruction simulator 2.7.6, copyright Jiri Gaisler 1995-1998
 Bug-reports to jgais@ws.estec.esa.nl

loading hello.srec:
section .sec1 at 0x00000000 (16784 bytes)
serial port A on stdin/stdout
sis> run
ERC32 boot loader v1.0

 initialising RAM
 decompressing .text
 decompressing .data

 starting hello

Hello world!
IU in error mode (257)
sis>

10 ERC32 GNU Cross-Compiler system

s to at-
. Below

as to be
o UART
4.2 GDB with simulator

To do symbolic debugging of both C and Ada applications, use gdb. After gdb is started, the simulator ha
tached and the program loaded. It is important that the applications have been compiled with the -g switch
is a sample session:

tellus > sparc-rtems-gdb hello
(gdb)tar sim

 SIS - SPARC instruction simulator 2.7.6
 Bug-reports to Jiri Gaisler ESA/ESTEC (jgais@ws.estec.esa.nl)
serial port A on stdin/stdout
Connected to the simulator.
(gdb)
(gdb) load
(gdb) break main
Breakpoint 1 at 0x20014e4: file hello.c, line 4.
(gdb) run
Starting program: /home/jgais/erc32/src/examples/hello

Breakpoint 1, main () at hello.c:4
4 printf(“Hello world!\n”);
(gdb) cont
Continuing.
Hello world!

Program exited normally.
(gdb)

4.3 GDB with remote target

To attach gdb to a remote targets similar to attaching to the simulator. The baud rate for the serial port h
specified and the remote target monitor has to run on the target. Also, a tip window should be connected t
A to see the application output. Below is a sample session with a remote target:

tellus> xterm -e tip -38400 /dev/ttya &
[234]
tellus > sparc-rtems-gdb hello
(gdb) set remotebaud 38400
(gdb) tar erc32 /dev/ttyb
Remote debugging using /dev/ttyb
0x2000000 in trap_table ()
(gdb) lo
Loading section .text, size 0x65e8 vma 0x2000000
Loading section .data, size 0x4d0 vma 0x20065e8
(gdb) bre main
Breakpoint 1 at 0x20014e4: file hello.c, line 3.
(gdb) run
Starting program: /home/jgais/erc32/src/examples/hello
main () at hello.c:4
3 printf(“Hello world!\n”);

Execution and debugging 11

egment

r use:

DD

and DDD
on-
rc32/doc

 allow
n
r
S, and

 ‘make
, con-

cessfully
f ram.
akefile
(gdb) cont
Continuing.

Program exited with code 03.
(gdb)

Note that the program has to be loaded each time before it is started with ‘run’. This is to initialise the data s
to the proper start values. It is possible to switch between several targets (real or simulated) in the same GDB session.
Use the GDB command detach to disconnect from the present target before attaching a new one.

4.4 Using DDD

DDD is a graphical front-end to gdb, and can be used regardless of target. To start DDD with the debugge

ddd --debugger sparc-rtems-gdb --attach-window

A small script, dddx , is provided to start DDD in this configuration. You might need the full path in front of D
if you already have a version of ddd installed. To get the source code displayed in the ddd window, click on locate().
The required gdb commands to connect to a target can be entered in the command window. See the GDB
manuals for how to set the default settings. If you have problems with getting DDD to run, run it with --check-c
figuration to probe for necessary libraries etc. DDD has many advanced features, see the manual in e
(ddd.pdf) or the on-line manual under the ‘Help’ menu.

4.5 Remote target monitor

The directory src/rdbmon contains the remote monitor which needs to be running on the target board to
remote target debugging with gdb. The monitor supports ‘break-in’ into a running program by pressing Ctrl-C i
GDB or interrupt in DDD. The two timers are stopped during monitor operation to preserve the notion of time fo
the application. Note that the remote debugger monitor only works with programs compiled with ERC32CC
thus NOT with programs compiled with Aonix Ada, VxWorks or similar.

Type make to build the monitor. Depending on desired baudrate type either ‘make m38k4’, ‘make m19k2’ or
m9k6’. Program the resulting *.srec file to you boot-prom. The remote debugger will be attached via UART B
sole is on UART A. The maximum baudrate depends on the system clock of the target, 38K4 has been suc
used with a zero-waitstate ERC32 system running at 10 MHz. The monitor installs it self into the top 32K o
It therefore needs to know how large the ram is. The default ram size for the monitor is 2 Mbyte, adjust the M
if your system has different size.

12 ERC32 GNU Cross-Compiler system

 at ad-
d extends

ult
e boot-

 the data

lated
le via
nction

function
ded in
 C-li-
5 Internals (sequential C-programs)

Below is some information you might need if you wish to modify the way sequential C-programs are built.

5.1 Memory allocation

The resulting executables are in a.out format and has three segments; text, data and bss. The text segment is
dress 0x2000000, followed immediately by the data and bss segments. The stack starts at top-of-ram an
downwards.

The link script ram.M in erc32/share/sparc-erc32-aout/lib contains the setting for the available memory. The defa
setting is 2Mbyte. The applications are not compiled for a specific ram size, the initialisation sequence in th
prom (or remote target monitor) will set the top of stack to the highest available memory. The area between
segment and the stack is used for the heap.

5.2 Libraries

A posix compatible C-library and math library is provided with ERC32CCS. However, no file or other I/O re
functions will work, with the exception of I/O to stdin/stdout. Stdin/stdout are mapped on UART A, accessib
the usual stdio functions. UART B can be accessed via file handle 3 (input) or 4 (output). The following fu
call will write size character from buf to UART B:

write(4,buf,size);

At startup of a program, the MEC real-time counter is programmed to increment one per microsecond. The
clock() will return the value of the counter. The sources to the board-specific part of the C-library is provi
erc32/src/libio . A user can modify the I/O functions according to his needs and install them into the
brary location (erc32/sparc-rtems/lib).

Figure 1: ERC32CCS applications memory map

Standalone app

Stack

Heap

Data

Text

0x2000000

Top-of-Ram
Remote debugger app

Stack

Heap

Data

Text

RDB interface

MkProm version 1.1 manual 13

sulates
 a mod-
ccord-

ptions.

med to

alue is

since

d rate

ected
6 MkProm version 1.1 manual

NAME

mkprom

SYNOPSYS

mkprom [-baud baudrate] [-wdog] [-nocomp] [-noedac] [-nopar] [-dump]
[-freq system_clock] [-noprot] [-o filename] [-ramsize size] [- romws ws]
[-romsize size] [- ramcs chip_selects] [-ramws ws] input_files

DESCRIPTION

The MkProm utility is used to create boot-images for programs compiled with ERC32CCS. It encap
the application in a loader suitable to be placed in a boot prom. The application is compressed with
ified LZSS algorithm, typically achieving a compression factor of 2. The loader initiates the system a
ing to the specified parameters. The loader operates in the following steps:

• The register files of IU and FPU (if present) are washed to initialise register parity bits.

• The MEC control, waitstate and memory configuration registers are set according to the specified o
• The top 32K of the ram is written to initiate the EDAC checksums.

• Part of the loader is moved to the top of ram to speed up operation.
• The remaining ram is written and the application is decompressed and installed.

• The text part of the application is write protected, except the lower 4K where the traptable is assu
reside.

• Finally, the application is started, setting the stack pointer to the top of ram.

OPTIONS
-baud baudrate

Set UART A and B baudrate to baudrate. Takes into account the system clock. Default v
19200.

- wdog
Enables the watchdog. By default, the watchdog is disabled.

- nocomp
Don’t compress application. Decreases loading time on the expense of rom size.

-noedac
Disable EDAC. By default, EDAC and parity checking of the ram is enabled.

-nopar
Disable RAM parity checking. Note, never do this if you do have parity on your target board
it could result in driver collision on the DPARIO line.

-freq system_clock

Defines the system clock in MHz. This value is used to calculate the divider value for the bau
generator and the real-time clock. Default is 10.

-noprot
Disable memory write protection. by default, the applications text segment is write-prot
against accidental over-write.

14 ERC32 GNU Cross-Compiler system

it-

lues is
- o outfile

Put the resulting image in outfile, rather then prom.out (default).
-ramsize size

Set the ramsize in the memory configuration register to size. The default value is 0x200000 (2
Mbyte).

-ramcs chip_selects

Set the number of ram banks to chip_selects. Default is 1.
-ramws ws

Set the number of waitstates during ram writes to ws. Default is 0. Ram reads are always zero-wa
state.

-romsize size

Set the rom size to size. Default is 0x80000 (512 KByte)

-romws ws

Set the number of rom waitstates during read to ws. Default is 2;

-v
Be verbose; reports compression statistics and compile commands

-dump
The intermediate assembly code with the compressed application and the MEC register va
put in dump.s (only for debugging of mkprom).

input_files

The input files must be in aout format. If more than one file is specified, all files are loaded by the
loader and control is transferred to the first segment of the first file.

16 ERC32 GNU Cross-Compiler system

d using
all pre-

o
d

umed.

in

will
t of the
COMMANDS

Below is description of commands that are recognized by the simulator. The command-line is parse
GNU readline. A command history of 64 commands is maintained. Use the up/down arrows to rec
vious commands. For more details, see the readline documentation.

batch file Execute a batch file of SIS commands.

+bp address Adds an breakpoint at address.

bp Prints all breakpoints

-bp num Deletes breakpoint num.

cont [count]

tcont [time] Continue execution at present position, optionally for count instructions or for time time.

dis [addr] [count]

Disassemble [count] instructions at address [addr]. Default values for count is 16 and addr
is the program counter address.

echo string Print <string> to the simulator window.

float Prints the FPU registers

go [address] [count]

tgo [address] [time]

The go command will set pc to address and npc to address + 4, and resume execution. N
other initialisation will be done. If count is specified, execution will stop after the specifie
number of instructions. If address is not given, the default load address will be ass
The tgo command will optionally resume execution until time is reached. See tlim on how
to specify the time.

help Print a small help menu for the SIS commands.

hist [length] Enable the instruction trace buffer. The length last executed instructions will be placed
the trace buffer. A hist command without length will display the trace buffer. Specifying a
zero trace length will disable the trace buffer.

load files Load files into simulator memory.

mem [addr] [count]

Display memory at addr for count bytes. Same default values as for dis.

quit Exits the simulator.

perf [reset] The perf command will display various execution statistics. A ‘perf reset’ command
reset the statistics. This can be used if statistics shall be calculated only over a par
program. The run and reset command also resets the statistic information.

SIS version 2.7.6 manual 17

 emp-

en in
 Ex-

. If an
reg [reg_name value]

Prints and sets the IU registers in the current register window. reg without parameters prints
the IU registers. reg reg_name value sets the corresponding register to value. Valid register
names are psr, tbr, wim, y, g1-g7, o0-o7 and l0-l7. To view the other register windows, use
reg wn, where n is 0 - 7.

reset Performs a power-on reset. This command is equal to run 0.

run [count]

trun [time] Resets the simulator and starts execution from address 0. If an instruction count is given,
the simulator will stop after the specified number of instructions. The event queue is
tied but any set breakpoints remain. trun command will execute until time is reached. See
tlim on how to specify the time.

step Equal to trace 1.

tlim <time> Limit the simulated time. Will stop a running simulator after time. The time parameter is
relative to the current time. The time is given in micro-seconds, but can also be giv
milli-seconds, seconds or minutes by adding ‘ms’, ‘s’ or ‘min’ to the time expression.
ample: tlim 400 ms.

tra [count] Starts the simulator at the present position and prints each instruction it executes
count is given, the simulator will stop after the specified number of instructions.

Typing a ‘Ctrl-C’ will interrupt a running simulator.

Short forms of the commands are allowed, e.g c, co, or con, are all interpreted as cont.

18 ERC32 GNU Cross-Compiler system

/MHS.
imulator
cution
Tracing
ates
til the
s:

t accu-
TIMING

The SIS emulates the behaviour of the TSC691E and TSC692E SPARC IU and FPU from Temic
These are roughly equivalent to the Cypress 7C601 and 7C602. The simulator is cycle true, i.e a s
time is maintained and incremented according the IU and FPU instruction timing. The parallel exe
between the IU and FPU is modelled, as well as stalls due to operand dependencies (IU & FPU).
using the trace command will display the current simulator time in the left column. This time indic
when the instruction is fetched. If a dependency is detected, the following fetch will be delayed un
conflict is resolved. Below is a table describing the instruction timing with no resource dependencie

Instruction Cycles Instruction Cycles

jmpl, rett 2 sqrts 37
load 2 fsqrtd 65
store 3 fsubs 4
load double 3 fsubd 4
store double 4 fdtoi 7
other integer inst 1 fdots 3
fabs 2 fitos 6
fadds 4 fitod 6
faddd 4 fstod 2
fcmps 4
fcmpd 4
fdivs 20
fdivd 35
fmovs 2
fmuls 5
fmuld 9
fnegs 2

FPU

The simulator maps floating-point operations on the hosts floating point capabilities. This means tha
racy and generation of IEEE exceptions is host dependent.

MEC EMULATION

The following list outlines the implemented MEC registers:

Register Address Status

MEC control register 0x01f80000 implemented
Software reset register 0x01f80004 implemented
Power-down register 0x01f80008 implemented
Memory configuration register 0x01f80010 partly implemented
IO configuration register 0x01f80014 implemented
Waitstate configuration register 0x01f80018 implemented
Access protection base register 1 0x01f80020 implemented
Access protection end register 1 0x01f80024 implemented
Access protection base register 2 0x01f80028 implemented

SIS version 2.7.6 manual 20

 trap.

IZ and
MEC is
be up-

ted with

he

an be

nvalid

g, this
re as-
hind the

 The ‘-
MEMORY EMULATION

The following memory areas are valid for the ERC32 simulator:

0x00000000 - 0x00080000 ROM (512 Kbyte)

0x02000000 - 0x02400000 RAM (4 Mbyte)

0x01f80000 - 0x01f80100 MEC registers

Access to unimplemented MEC registers or non-existing memory will result in a memory exception

The memory configuration register is used to define available memory in the system. The fields RS
PSIZ are used to set RAM and ROM size, the remaining fields are not used. NOTE: after reset, the
set to decode 128 Kbyte of ROM and 256 Kbyte of RAM. The memory configuration register has to
dated to reflect the available memory.

The waitstate configuration register is used to generate waitstates. This register must also be upda
the correct configuration after reset.

GDB-INTEGRATED SIS

To use the GDB-integrated simulator (gdb or gdb64), use the ‘target sim’ command at the gdb prompt. T
only valid options for gdb are -rom8, -nfp, -freq, -v, -sparclite, -uben and -nogdb. GDB inserts break-
points in the form of the ‘ta 1’ instruction. The GDB-integrated simulator will therefore recognize the break-
point instruction and return control to GDB. If the application uses ‘ta 1’, the breakpoint detection c
disabled with the -nogdb switch. In this case however, GDB breakpoints will not work.

Before control is left to GDB, all register windows are flushed out to the stack. Starting after the i
window, flushing all windows up to, and including the current window. This allows GDB to do backtraces
and look at local variables for frames that are still in the register windows. Note that strictly speakin
behaviour is wrong for several reasons. First, it doesn’t use the window overflow handlers. It therefo
sumes standard frame layouts and window handling policies. Second, it changes system state be
back of the target program. Typically, this will only create problems when debugging trap handlers.
nogdb’ switch disables the register flushing as well.

	1 Introduction
	1.1 General
	1.2 News in version 1.3

	2 Installation and directory structure
	2.1 Obtaining ERC32CCS
	2.2 Installation
	2.3 Environment
	2.4 Support

	3 Using ERC32CCS
	3.1 ERC32CCS tools
	3.2 Documentation
	3.3 Development flow
	3.4 RTEMS applications
	3.5 Compiling sequential C-programs
	3.6 Compiling Ada95 programs
	3.7 Making boot-proms
	3.8 Simple examples
	3.9 FPU rev.B bugs

	4 Execution and debugging
	4.1 Standalone simulator
	4.2 GDB with simulator
	4.3 GDB with remote target
	4.4 Using DDD
	4.5 Remote target monitor

	5 Internals (sequential C-programs)
	5.1 Memory allocation
	5.2 Libraries

	6 MkProm version 1.1 manual
	7 SIS version 2.7.6 manual

