
RTEMS Development Environment Guide

Edition 970904, for RTEMS 970904

September 1997

On-Line Applications Research Corporation

On-Line Applications Research Corporation

TEXinfo 1.1.1.1

COPYRIGHT c 1989 - 1997.

On-Line Applications Research Corporation (OAR).

The authors have used their best e�orts in preparing this material. These e�orts include the

development, research, and testing of the theories and programs to determine their e�ectiveness.

No warranty of any kind, expressed or implied, with regard to the software or the material contained

in this document is provided. No liability arising out of the application or use of any product

described in this document is assumed. The authors reserve the right to revise this material and to

make changes from time to time in the content hereof without obligation to notify anyone of such

revision or changes.

Any inquiries concerning RTEMS, its related support components, or its documentation should be

directed to either:

On-Line Applications Research Corporation

4910-L Corporate Drive

Huntsville, AL 35805

VOICE: (205) 722-9985

FAX: (205) 722-0985

EMAIL: rtems@OARcorp.com

i

Table of Contents

1 Introduction . 1

2 Directory Structure . 3

2.1 Suites . 3

2.1.1 C Suites . 4

2.1.2 Executive Source Directory . 5

2.1.3 Support Library Source Directory . 5

2.1.4 Test Suite Source Directory . 6

3 Sample Applications . 9

3.1 Introduction . 9

3.2 Hello World . 9

3.3 Clock Tick . 9

3.4 Base Single Processor Application . 10

3.5 Base Multiple Processor Application . 11

3.6 Constructor/Destructor C++ Application . 11

3.7 Paranoia Floating Point Application . 12

4 RTEMS Speci�c Utilities . 13

4.1 C Language Speci�c Utilities . 14

4.1.1 packhex - Compress Hexadecimal File 14

4.1.2 unhex - Convert Hexadecimal File into Binary Equivalent

. 15

4.1.3 size rtems - report RTEMS size information 15

4.2 Ada Language Speci�c Utilities . 17

Command and Variable Index . 19

Concept Index . 21

ii RTEMS Development Environment Guide

Chapter 1: Introduction 1

1 Introduction

This document describes the RTEMS development environment. Discussions are provided for the

following topics:

� the directory structure used by RTEMS,

� usage of the GNU Make utility within the RTEMS development environment,

� sample applications, and

� the RTEMS speci�c utilities.

RTEMS was designed as a reusable software component. Highly reusable software such as RTEMS

is typically distributed in the form of source code without providing any support tools. RTEMS is

the foundation for a complex family of facilities including board support packages, device drivers,

and support libraries. The RTEMS Development Environment is not a CASE tool. It is a collection

of tools designed to reduce the complexity of using and enhancing the RTEMS family. Tools are

provided which aid in the management of the development, maintenance, and usage of RTEMS, its

run-time support facilities, and applications which utilize the executive.

A key component of the RTEMS development environment is the GNU family of free tools. This

is robust set of development and POSIX compatible tools for which source code is freely available.

The primary compilers, assemblers, linkers, and make utility used by the RTEMS development

team are the GNU tools. They are highly portable supporting a wide variety of host computers

and, in the case of the development tools, a wide variety of target processors.

It is recommended that the RTEMS developer become familiar with the RTEMS Development

Environment before proceeding with any modi�cations to the executive source tree. The source

code for the executive is very modular and source code is divided amongst directories based upon

functionality as well as dependencies on CPU and target board. This organization is aimed at

isolating and minimizing non-portable code. This has the immediate result that adding support

for a new CPU or target board requires very little "wandering" around the source tree.

2 RTEMS Development Environment Guide

Chapter 2: Directory Structure 3

2 Directory Structure

The RTEMS directory structure is designed to meet the following requirements:

� encourage development of modular components.

� isolate processor and target dependent code, while allowing as much common source code

as possible to be shared across multiple processors and targets.

� allow multiple RTEMS users to perform simultaneous compilation of RTEMS and its sup-

port facilities for di�erent processors and targets.

The resulting directory structure has processor and target dependent source �les isolated from

generic �les. When RTEMS is built, object directories and an install point will be automatically

created based upon the target BSP selected. The placement of object �les based upon the selected

BSP name insures that object �les are not mixed across CPUs or targets. This in combination

with the make �les allows the speci�c compilation options to be tailored for a particular target

board. For example, the e�ciency of the memory subsystem for a particular target board may be

sensitive to the alignment of data structures, while on another target board with the same processor

memory may be very limited. For the �rst target, the options could specify very strict alignment

requirements, while on the second the data structures could be "packed" to conserve memory. It

is impossible to achieve this degree of exibility without providing source code.

2.1 Suites

The RTEMS source tree is organized based on the following four variables:

� language,

� target processor,

� target board, and

� compiler vendor (Ada only).

The language may be either C or Ada and there is currently nothing shared between the source

trees for these two implementations of RTEMS. The user generally selects the subdirectory for the

implementation they are using and ignores that for the other implementation. The only exceptions

to this normally occurs when comparing the source code for the two implementations or when

porting both to a new CPU or target board. The following shows the top level RTEMS directory

structure which includes directories for each language implementation and a language independent

source documentation directory. The source documentation directory is currently not supported.

RTEMS

c doc

4 RTEMS Development Environment Guide

Each of the following sections will describe the contents of the directories in the RTEMS source

tree.

2.1.1 C Suites

The following table lists the suites currently included with the C implementation of RTEMS and

the directory in which they may be located:

Support Libraries (BSPs, C library, CPU support)

$RTEMS ROOT/c/src/lib

Single Processor Tests

$RTEMS ROOT/c/src/tests/sptests

Timing Tests $RTEMS ROOT/c/src/tests/tmtests

Multiprocessor Tests

$RTEMS ROOT/c/src/tests/mptests

Sample Applications

$RTEMS ROOT/c/src/tests/samples

RTEMS Build Tools $RTEMS SRC BASE/c/build tools

Make Support $RTEMS ROOT/c/make

The top level directory structure for the C implementation of RTEMS is as follows:

C

Modules build tools make src update tools

This directory contains the subdirectories which contain the entire C implementation of the RTEMS

executive. The "build-tools" directory contains an assortment of support tools for the RTEMS

development environment. Two subdirectories exist under "build-tools" which contain scripts (ex-

ecutables) and source for the support tools. The "make" directory contains con�guration �les and

subdirectories which provide a robust host and cross-target make�le system supporting the build-

ing of the executive for numerous application environments. The "update tools" directory contains

utilities which aid in the updating from a previous version to the current version of the RTEMS

executive.

The "src" directory structure for the C implementation of RTEMS is as follows:

C Source

exec lib tests

Chapter 2: Directory Structure 5

This directory contains all source �les that comprises the RTEMS executive, supported target board

support packages, and the RTEMS Test Suite.

2.1.2 Executive Source Directory

The "exec" directory structure for the C implementation is as follows:

C Executive

posix rtems sapi score wrapup

This directory contains a set of subdirectories which contains the source �les comprising the ex-

ecutive portion of the RTEMS development environment. At this point the API speci�c and "su-

percore" source code �les are separated into distinct directory trees. The "rtems" and the "posix"

subdirectories contain the C language source �les for each module comprising the respective API.

Also included in this directory are the subdirectories "sapi" and "score" which are the supercore

modules. Within the "score" directory the CPU dependent modules are found.

The "cpu" directory contains a subdirectory for each target CPU supported by the {No value

for \RELEASE"} release of the RTEMS executive. Each processor directory contains the CPU

dependent code necessary to host RTEMS. The "no cpu" directory provides a starting point for

developing a new port to an unsupported processor. The �les contained within the "no cpu"

directory may also be used as a reference for the other ports to speci�c processors.

2.1.3 Support Library Source Directory

The "lib" directory contains the support libraries and BSPS. Board support packages (BSPs),

processor environment start up code, C library support, the KA9Q TCP/IP stack, common BSP

header �les, and miscellaneous support functions are provided in the subdirectories. These are

combined with the RTEMS executive object to form the single RTEMS library which installed.

The "libbsp" directory contains a directory for each CPU family supported by RTEMS. Beneath

each CPU directory is a directory for each BSP for that processor family.

The "libbsp" directory provides all the BSPs provided with this release of the RTEMS executive.

The subdirectories are divided, as discussed previously, based on speci�c processor family, then

further breaking down into speci�c target board environments. The "shmdr" subdirectory pro-

vides the implementation of a shared memory driver which supports the multiprocessing portion

of the executive. In addition, two starting point subdirectories are provided for reference. The

"no cpu" subdirectory provides a template BSP which can be used to develop a speci�c BSP for

an unsupported target board. The "stubdr" subdirectory provides stubbed out BSPs. These �les

may aid in preliminary testing of the RTEMS development environment that has been built for no

particular target in mind.

6 RTEMS Development Environment Guide

Below each CPU dependent directory is a directory for each target BSP supported in this release.

Each BSP provides the modules which comprise an RTEMS BSP. The modules are separated into

the subdirectories "clock", "console", "include", "shmsupp", "startup", and "timer" as shown in

the following �gure:

Each BSP

clock console include shmsupp startup timer

2.1.4 Test Suite Source Directory

The "tests" directory structure for the C implementation is as follows:

C Tests

libtests sptests support tmtests mptests tools samples

This directory provides the entire RTEMS Test Suite which includes the single processor tests,

multiprocessor tests, timing tests, library tests, and sample tests. Additionally, subdirectories for

support functions and test related header �les are provided.

The "sptests" subdirectory consists of twenty-four tests designed to cover the entire executive code.

The "spfatal" test will verify any code associated with the occurrence of a fatal error. Also provided

is a test which will determine the size of the RTEMS executive.

The multiprocessor test are provided in "mptests". Fourteen tests are provided in this subdirectory

which address two node con�gurations and cover the multiprocessor code found in RTEMS.

Tests that time each directive and a set of critical executive functions are provided in the "tmtests"

subdirectory. Within this subdirectory thirty-one tests are provided along with a subdirectory to

contain each targets timing results.

The "samples" directory structure for the C implementation is as follows:

C Samples

base mp base sp cdtest hello paranoia ticker

This directory provides sample application tests which aid in the testing a newly built RTEMS

environment, a new BSP, or as starting points for the development of an application using the

RTEMS executive. A Hello World test is provided in the subdirectory "hello". This test is help-

ful when testing new versions of RTEMS, BSPs, or modi�cations to any portion of the RTEMS

development environment. The "ticker" subdirectory provides a test for veri�cation of clock chip

Chapter 2: Directory Structure 7

device drivers of BSPs. A simple single processor test similar to those in the single processor test

suite is provided in "base sp". A simple two node multiprocessor test capable of testing an newly

developed MPCI layer is provided in "base mp". The "cdtest" subdirectory provides a simple C++

application using constructors and destructors. The �nal sample test is a public domain oating

point and math library toolset test is provided in "paranoia".

8 RTEMS Development Environment Guide

Chapter 3: Sample Applications 9

3 Sample Applications

3.1 Introduction

RTEMS is shipped with the following sample applications:

� Hello World - C and Ada

� Clock Tick - C and Ada

� Base Single Processor - C and Ada

� Base Multiple Processor - C and Ada

� Constructor/Destructor C++ Test - C only if C++ enabled

� Paranoia Floating Point Test - C only

These applications are intended to illustrate the basic format of RTEMS single and multiple pro-

cessor applications. In addition, these relatively simple applications can be used to test locally

developed board support packages and device drivers.

The reader should be familiar with the terms used and material presented in the RTEMS Applica-

tions User's Guide.

3.2 Hello World

This sample application is in the following directory:

$RTEMS_SRC_BASE/tests/samples/hello

It provides a rudimentary test of the BSP start up code and the console output routine. The C

version of this sample application uses the printf function from the RTEMS Standard C Library to

output messages. The Ada version of this sample use the TEXT IO package to output the hello

messages. The following messages are printed:

*** HELLO WORLD TEST ***

Hello World

*** END OF HELLO WORLD TEST ***

These messages are printed from the application's single initialization task. If the above messages

are not printed correctly, then either the BSP start up code or the console output routine is not

operating properly.

3.3 Clock Tick

This sample application is in the following directory:

$RTEMS_SRC_BASE/tests/samples/ticker

10 RTEMS Development Environment Guide

This application is designed as a simple test of the clock tick device driver. In addition, this

application also tests the printf function from the RTEMS Standard C Library by using it to

output the following messages:

*** CLOCK TICK TEST ***

TA1 - tm_get - 09:00:00 12/31/1988

TA2 - tm_get - 09:00:00 12/31/1988

TA3 - tm_get - 09:00:00 12/31/1988

TA1 - tm_get - 09:00:05 12/31/1988

TA1 - tm_get - 09:00:10 12/31/1988

TA2 - tm_get - 09:00:10 12/31/1988

TA1 - tm_get - 09:00:15 12/31/1988

TA3 - tm_get - 09:00:15 12/31/1988

TA1 - tm_get - 09:00:20 12/31/1988

TA2 - tm_get - 09:00:20 12/31/1988

TA1 - tm_get - 09:00:25 12/31/1988

TA1 - tm_get - 09:00:30 12/31/1988

TA2 - tm_get - 09:00:30 12/31/1988

TA3 - tm_get - 09:00:30 12/31/1988

*** END OF CLOCK TICK TEST ***

The clock tick sample application utilizes a single initialization task and three copies of the single

application task. The initialization task prints the test herald, sets the time and date, and creates

and starts the three application tasks before deleting itself. The three application tasks generate

the rest of the output. Every �ve seconds, one or more of the tasks will print the current time

obtained via the tm get directive. The �rst task, TA1, executes every �ve seconds, the second task,

TA2, every ten seconds, and the third task, TA3, every �fteen seconds. If the time printed does

not match the above output, then the clock device driver is not operating properly.

3.4 Base Single Processor Application

This sample application is in the following directory:

$RTEMS_SRC_BASE/tests/samples/base_sp

It provides a framework from which a single processor RTEMS application can be developed. The

use of the task argument is illustrated. This sample application uses the printf function from the

RTEMS Standard C Library or TEXT IO functions when using the Ada version to output the

following messages:

*** SAMPLE SINGLE PROCESSOR APPLICATION ***

Creating and starting an application task

Application task was invoked with argument (0) and has id of 0x10002

*** END OF SAMPLE SINGLE PROCESSOR APPLICATION ***

The �rst two messages are printed from the application's single initialization task. The �nal

messages are printed from the single application task.

Chapter 3: Sample Applications 11

3.5 Base Multiple Processor Application

This sample application is in the following directory:

$RTEMS_SRC_BASE/tests/samples/base_mp

It provides a framework from which a multiprocessor RTEMS application can be developed. This

directory has a subdirectory for each node in the multiprocessor system. The task argument is

used to distinguish the node on which the application task is executed. The �rst node will print

the following messages:

*** SAMPLE MULTIPROCESSOR APPLICATION ***

Creating and starting an application task

This task was invoked with the node argument (1)

This task has the id of 0x10002

*** END OF SAMPLE MULTIPROCESSOR APPLICATION ***

The second node will print the following messages:

*** SAMPLE MULTIPROCESSOR APPLICATION ***

Creating and starting an application task

This task was invoked with the node argument (2)

This task has the id of 0x20002

*** END OF SAMPLE MULTIPROCESSOR APPLICATION ***

The herald is printed from the application's single initialization task on each node. The �nal

messages are printed from the single application task on each node.

In this sample application, all source code is shared between the nodes except for the node dependent

con�guration �les. These �les contains the de�nition of the node number used in the initialization

of the RTEMS Multiprocessor Con�guration Table. This �le is not shared because the node number

�eld in the RTEMS Multiprocessor Con�guration Table must be unique on each node.

3.6 Constructor/Destructor C++Application

This sample application is in the following directory:

$RTEMS_SRC_BASE/tests/samples/cdtest

This sample application demonstrates that RTEMS is compatible with C++ applications. It uses

constructors, destructor, and I/O stream output in testing these various capabilities. The board

support package responsible for this application must support a C++ environment.

This sample application uses the printf function from the RTEMS Standard C Library to output

the following messages:

12 RTEMS Development Environment Guide

Hey I'M in base class constructor number 1 for 0x400010cc.

Hey I'M in base class constructor number 2 for 0x400010d4.

Hey I'M in derived class constructor number 3 for 0x400010d4.

*** CONSTRUCTOR/DESTRUCTOR TEST ***

Hey I'M in base class constructor number 4 for 0x4009ee08.

Hey I'M in base class constructor number 5 for 0x4009ee10.

Hey I'M in base class constructor number 6 for 0x4009ee18.

Hey I'M in base class constructor number 7 for 0x4009ee20.

Hey I'M in derived class constructor number 8 for 0x4009ee20.

Testing a C++ I/O stream

Hey I'M in derived class constructor number 8 for 0x4009ee20.

Derived class - Instantiation order 8

Hey I'M in base class constructor number 7 for 0x4009ee20.

Instantiation order 8

Hey I'M in base class constructor number 6 for 0x4009ee18.

Instantiation order 6

Hey I'M in base class constructor number 5 for 0x4009ee10.

Instantiation order 5

Hey I'M in base class constructor number 4 for 0x4009ee08.

Instantiation order 5

*** END OF CONSTRUCTOR/DESTRUCTOR TEST ***

Hey I'M in base class constructor number 3 for 0x400010d4.

Hey I'M in base class constructor number 2 for 0x400010d4.

Hey I'M in base class constructor number 1 for 0x400010cc.

3.7 Paranoia Floating Point Application

This sample application is in the following directory:

$RTEMS_SRC_BASE/tests/samples/paranoia

This sample application uses a public domain oating point and math library test to verify these

capabilities of the RTEMS executive. Deviations between actual and expected results are reported

to the screen. This is a very extensive test which tests all mathematical and number conversion

functions. Paranoia is also very large and requires a long period of time to run. Problems which

commonly prevent this test from executing to completion include stack overow and FPU exception

handlers not installed.

Chapter 4: RTEMS Speci�c Utilities 13

4 RTEMS Speci�cUtilities

This section describes the additional commands available within the RTEMS Development En-

vironment. Although some of these commands are of general use, most are included to provide

some capability necessary to perform a required function in the development of the RTEMS exec-

utive, one of its support components, or an RTEMS based application. The commands have been

classi�ed into the following categories for clarity:

� C Language Speci�c Utilities

� Ada Language Speci�c Utilities

Some of the commands are implemented as C programs. However, most commands are implemented

as Bourne shell scripts. Even if the current user has selected a di�erent shell, the scripts will

automatically invoke the Bourne shell during their execution lifetime.

The commands are presented in UNIX manual page style for compatibility and convenience. A

standard set of paragraph headers were used for all of the command descriptions. If a section

contained no data, the paragraph header was omitted to conserve space. Each of the permissible

paragraph headers and their contents are described below:

SYNOPSIS describes the command syntax

DESCRIPTION a full description of the command

OPTIONS describes each of the permissible options for the command

NOTES lists any special noteworthy comments about the command

ENVIRONMENT describes all environment variables utilized by the command

EXAMPLES illustrates the use of the command with speci�c examples

FILES provides a list of major �les that the command references

SEE ALSO lists any relevant commands which can be consulted

Most environment variables referenced by the commands are de�ned for the RTEMS Development

Environment during the login procedure. During login, the user selects a default RTEMS environ-

ment through the use of the Modules package. This tool e�ectively sets the environment variables

to provide a consistent development environment for a speci�c user. Additional environment vari-

ables within the RTEMS environment were set by the system administrator during installation.

When specifying paths, a command description makes use of these environment variables.

When referencing other commands in the SEE ALSO paragraph, the following notation is used:

command(code). Where command is the name of a related command, and code is a section number.

Valid section numbers are as follows:

1 Section 1 of the standard UNIX documentation

14 RTEMS Development Environment Guide

1G Section 1 of the GNU documentation

1R a manual page from this document, the RTEMS Development Environment

Guide

For example, ls(1) means see the standard ls command in section 1 of the UNIX documentation.

gcc020(1G) means see the description of gcc020 in section 1 of the GNU documentation.

4.1 C Language Speci�c Utilities

The C language utilities provide a powerful set of tools which combine to allow operations within

the RTEMS Development Environment to be consistent and easy to use. Much e�ort was devoted

to providing as close to the standard UNIX and GNU style of operations as possible. Each of these

utilities are described in the section below.

4.1.1 packhex - Compress Hexadecimal File

SYNOPSIS

packhex <source >destination

DESCRIPTION

packhex accepts Intel Hexadecimal or Motorola Srecord on its standard input and attempts to pack

as many contiguous bytes as possible into a single hexadecimal record. Many programs output

hexadecimal records which are less than 80 bytes long (for human viewing). The overhead required

by each unnecessary record is signi�cant and packhex can often reduce the size of the download

image by 20%. packhex attempts to output records which are as long as the hexadecimal format

allows.

OPTIONS

This command has no options.

EXAMPLES

Assume the current directory contains the Motorola Srecord �le download.sr. Then executing the

command:

packhex <download.sr >packed.sr

will generate the �le packed.sr which is usually smaller than download.sr.

Chapter 4: RTEMS Speci�c Utilities 15

CREDITS

The source for packhex �rst appeared in the May 1993 issue of Embedded Systems magazine. The

code was downloaded from their BBS. Unfortunately, the author's name was not provided in the

listing.

4.1.2 unhex - Convert Hexadecimal File into Binary Equivalent

SYNOPSIS

unhex [-valF] [-o file] [file [file ...]]

DESCRIPTION

unhex accepts Intel Hexadecimal, Motorola Srecord, or TI 'B' records and converts them to their

binary equivalent. The output may sent to standout or may be placed in a speci�ed �le with the -o

option. The designated output �le may not be an input �le. Multiple input �les may be speci�ed

with their outputs logically concatenated into the output �le.

OPTIONS

This command has the following options:

v Verbose

a base First byte of output corresponds with base address

l Linear Output

o file Output File

F k_bits Fill holes in input with 0xFFs up to k bits * 1024 bits

EXAMPLES

The following command will create a binary equivalent �le for the two Motorola S record �les in

the speci�ed output �le binary.bin:

unhex -o binary.bin downloadA.sr downloadB.sr

4.1.3 size rtems - report RTEMS size information

SYNOPSIS

size_rtems

16 RTEMS Development Environment Guide

DESCRIPTION

size rtems analyzes RTEMS and determines all of the critical sizing information which is reported

in the related documentation.

EXAMPLES

To generate the RTEMS size report for the currently con�gured processor, execute the following

command:

size_rtems

Although the actual size information will di�er, a report of the following format will be output:

RTEMS SIZE REPORT

CODE DATA BSS

==================

MANAGERS: 15988 0 0

CORE : 4568 0 0

CPU : 364 0 0

OVERALL : 20556 0 0

MINIMUM : 8752 0 0

init : 1592 0 0

tasks : 2440 0 0

intr : 64 0 0

clock : 2252 0 0

sem : 876 0 0

msg : 1624 0 0

event : 604 0 0

signal : 212 0 0

part : 872 0 0

region : 844 0 0

dpmem : 532 0 0

timer : 424 0 0

io : 288 0 0

fatal : 40 0 0

rtmon : 764 0 0

mp : 2984 0 0

sem : 4 0 0

msg : 4 0 0

event : 4 0 0

signal : 4 0 0

part : 4 0 0

region : 4 0 0

timer : 4 0 0

dpmem : 4 0 0

Chapter 4: RTEMS Speci�c Utilities 17

io : 4 0 0

rtmon : 4 0 0

mp : 8 0 0

SEE ALSO

gsize020(1G), gsize386(1G), gsize960(1G)

4.2 Ada Language Speci�c Utilities

The Ada language utilities provide a powerful set of tools which combine to allow operations within

the RTEMS Development Environment to be consistent and easy to use. Much e�ort was devoted

to providing as close to the standard UNIX and GNU style of operations as possible. Each of these

utilities are described in the section below.

NOTE: The Ada implementation is not included in this release.

18 RTEMS Development Environment Guide

Command and Variable Index 19

Command andVariable Index

There are currently no Command and Variable Index entries.

20 RTEMS Development Environment Guide

Concept Index 21

Concept Index

There are currently no Concept Index entries.

22 RTEMS Development Environment Guide

	Table of Contents
	1 Introduction
	2 Directory Structure
	2.1 Suites
	2.1.1 C Suites
	2.1.2 Executive Source Directory
	2.1.3 Support Library Source Directory
	2.1.4 Test Suite Source Directory

	3 Sample Applications
	3.1 Introduction
	3.2 Hello World
	3.3 Clock Tick
	3.4 Base Single Processor Application
	3.5 Base Multiple Processor Application
	3.6 Constructor/Destructor C
	3.7 Paranoia Floating Point Application

	4 RTEMS Specific Utilities
	4.1 C Language Specific Utilities
	4.1.1 packhex - Compress Hexadecimal File
	4.1.3 size rtems - report RTEMS size information

	4.2 Ada Language Specific Utilities

