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Preface

The Real Time Executive for Multiprocessor Systems (RTEMS) is designed to be portable across

multiple processor architectures. However, the nature of real-time systems makes it essential that

the application designer understand certain processor dependent implementation details. These

processor dependencies include calling convention, board support package issues, interrupt pro-

cessing, exact RTEMS memory requirements, performance data, header �les, and the assembly

language interface to the executive.

This document discusses the SPARC architecture dependencies in this port of RTEMS. Currently,

only implementations of SPARC Version 7 are supported by RTEMS.

It is highly recommended that the SPARC RTEMS application developer obtain and become famil-

iar with the documentation for the processor being used as well as the speci�cation for the revision

of the SPARC architecture which corresponds to that processor.

SPARC Architecture Documents

For information on the SPARC architecture, refer to the following documents available from SPARC

International, Inc. (http://www.sparc.com):

� SPARC Standard Version 7.

� SPARC Standard Version 8.

� SPARC Standard Version 9.

ERC32 Speci�c Information

The European Space Agency's ERC32 is a three chip computing core implementing a SPARC

V7 processor and associated support circuitry for embedded space applications. The integer and

oating-point units (90C601E & 90C602E) are based on the Cypress 7C601 and 7C602, with addi-

tional error-detection and recovery functions. The memory controller (MEC) implements system

support functions such as address decoding, memory interface, DMA interface, UARTs, timers, in-

terrupt control, write-protection, memory recon�guration and error-detection. The core is designed

to work at 25MHz, but using space quali�ed memories limits the system frequency to around 15

MHz, resulting in a performance of 10 MIPS and 2 MFLOPS.

Information on the ERC32 and a number of development support tools, such as the SPARC Instruc-

tion Simulator (SIS), are freely available on the Internet. The following documents and SIS are avail-

able via anonymous ftp or pointing your web browser at ftp://ftp.estec.esa.nl/pub/ws/wsd/erc32.

� ERC32 System Design Document

� MEC Device Speci�cation
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Additionally, the SPARC RISC User's Guide from Matra MHS documents the functionality of the

integer and oating point units including the instruction set information. To obtain this document

as well as ERC32 components and VHDL models contact:

Matra MHS SA

3 Avenue du Centre, BP 309,

78054 St-Quentin-en-Yvelines,

Cedex, France

VOICE: +31-1-30607087

FAX: +31-1-30640693

Amar Guennon (amar.guennon@matramhs.fr) is familiar with the ERC32.
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1 CPUModel Dependent Features

1.1 Introduction

Microprocessors are generally classi�ed into families with a variety of CPU models or implementa-

tions within that family. Within a processor family, there is a high level of binary compatibility.

This family may be based on either an architectural speci�cation or on maintaining compatibility

with a popular processor. Recent microprocessor families such as the SPARC or PA-RISC are

based on an architectural speci�cation which is independent or any particular CPU model or im-

plementation. Older families such as the M68xxx and the iX86 evolved as the manufacturer strived

to produce higher performance processor models which maintained binary compatibility with older

models.

RTEMS takes advantage of the similarity of the various models within a CPU family. Although

the models do vary in signi�cant ways, the high level of compatibility makes it possible to share

the bulk of the CPU dependent executive code across the entire family.

1.2 CPUModel Feature Flags

Each processor family supported by RTEMS has a list of features which vary between CPU models

within a family. For example, the most common model dependent feature regardless of CPU family

is the presence or absence of a oating point unit or coprocessor. When de�ning the list of features

present on a particular CPU model, one simply notes that oating point hardware is or is not

present and de�nes a single constant appropriately. Conditional compilation is utilized to include

the appropriate source code for this CPU model's feature set. It is important to note that this

means that RTEMS is thus compiled using the appropriate feature set and compilation ags optimal

for this CPU model used. The alternative would be to generate a binary which would execute on

all family members using only the features which were always present.

This section presents the set of features which vary across SPARC implementations and are

of importance to RTEMS. The set of CPU model feature macros are de�ned in the �le

c/src/exec/score/cpu/sparc/sparc.h based upon the particular CPU model de�ned on the com-

pilation command line.

1.2.1 CPUModel Name

The macro CPU MODEL NAME is a string which designates the name of this CPU model. For

example, for the European Space Agency's ERC32 SPARC model, this macro is set to the string

"erc32".
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1.2.2 Floating Point Unit

The macro SPARC HAS FPU is set to 1 to indicate that this CPU model has a hardware oating

point unit and 0 otherwise.

1.2.3 Bitscan Instruction

The macro SPARC HAS BITSCAN is set to 1 to indicate that this CPU model has the bitscan

instruction. For example, this instruction is supported by the Fujitsu SPARClite family.

1.2.4 Number of Register Windows

The macro SPARC NUMBER OF REGISTER WINDOWS is set to indicate the number of register

window sets implemented by this CPU model. The SPARC architecture allows a for a maximum

of thirty-two register window sets although most implementations only include eight.

1.2.5 Low Power Mode

The macro SPARC HAS LOW POWER MODE is set to one to indicate that this CPU model has

a low power mode. If low power is enabled, then there must be CPU model speci�c implementation

of the IDLE task in c/src/exec/score/cpu/sparc/cpu.c. The low power mode IDLE task should be

of the form:

while ( TRUE ) {

enter low power mode

}

The code required to enter low power mode is CPU model speci�c.

1.3 CPUModel Implementation Notes

The ERC32 is a custom SPARC V7 implementation based on the Cypress 601/602 chipset. This

CPU has a number of on-board peripherals and was developed by the European Space Agency to

target space applications. RTEMS currently provides support for the following peripherals:

� UART Channels A and B

� General Purpose Timer

� Real Time Clock

� Watchdog Timer (so it can be disabled)

� Control Register (so powerdown mode can be enabled)

� Memory Control Register

� Interrupt Control



Chapter 1: CPU Model Dependent Features 5

The General Purpose Timer and Real Time Clock Timer provided with the ERC32 share the

Timer Control Register. Because the Timer Control Register is write only, we must mirror it in

software and insure that writes to one timer do not alter the current settings and status of the

other timer. Routines are provided in erc32.h which promote the view that the two timers are

completely independent. By exclusively using these routines to access the Timer Control Register,

the application can view the system as having a General Purpose Timer Control Register and a

Real Time Clock Timer Control Register rather than the single shared value.

The RTEMS Idle thread take advantage of the low power mode provided by the ERC32. Low

power mode is entered during idle loops and is enabled at initialization time.
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2 Calling Conventions

2.1 Introduction

Each high-level language compiler generates subroutine entry and exit code based upon a set of

rules known as the compiler's calling convention. These rules address the following issues:

� register preservation and usage

� parameter passing

� call and return mechanism

A compiler's calling convention is of importance when interfacing to subroutines written in another

language either assembly or high-level. Even when the high-level language and target processor are

the same, di�erent compilers may use di�erent calling conventions. As a result, calling conventions

are both processor and compiler dependent.

2.2 Programming Model

This section discusses the programming model for the SPARC architecture.

2.2.1 Non-Floating Point Registers

The SPARC architecture de�nes thirty-two non-oating point registers directly visible to the pro-

grammer. These are divided into four sets:

� input registers

� local registers

� output registers

� global registers

Each register is referred to by either two or three names in the SPARC reference manuals. First,

the registers are referred to as r0 through r31 or with the alternate notation r[0] through r[31].

Second, each register is a member of one of the four sets listed above. Finally, some registers have

an architecturally de�ned role in the programming model which provides an alternate name. The

following table describes the mapping between the 32 registers and the register sets:

Register Number Register Names Description

0 - 7 g0 - g7 Global Registers

8 - 15 o0 - o7 Output Registers

16 - 23 l0 - l7 Local Registers

24 - 31 i0 - i7 Input Registers
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As mentioned above, some of the registers serve de�ned roles in the programming model. The

following table describes the role of each of these registers:

Register Name Alternate Names Description

g0 NA reads return 0;

writes are ignored

o6 sp stack pointer

i6 fp frame pointer

i7 NA return address

2.2.2 Floating Point Registers

The SPARC V7 architecture includes thirty-two, thirty-two bit registers. These registers may be

viewed as follows:

� 32 single precision oating point or integer registers (f0, f1, ... f31)

� 16 double precision oating point registers (f0, f2, f4, ... f30)

� 8 extended precision oating point registers (f0, f4, f8, ... f28)

The oating point status register (fpsr) speci�es the behavior of the oating point unit for rounding,

contains its condition codes, version speci�cation, and trap information.

A queue of the oating point instructions which have started execution but not yet completed is

maintained. This queue is needed to support the multiple cycle nature of oating point operations

and to aid oating point exception trap handlers. Once a oating point exception has been en-

countered, the queue is frozen until it is emptied by the trap handler. The oating point queue

is loaded by launching instructions. It is emptied normally when the oating point completes all

outstanding instructions and by oating point exception handlers with the store double oating

point queue (stdfq) instruction.

2.2.3 Special Registers

The SPARC architecture includes two special registers which are critical to the programming model:

the Processor State Register (psr) and the Window Invalid Mask (wim). The psr contains the

condition codes, processor interrupt level, trap enable bit, supervisor mode and previous supervisor

mode bits, version information, oating point unit and coprocessor enable bits, and the current

window pointer (cwp). The cwp �eld of the psr and wim register are used to manage the register

windows in the SPARC architecture. The register windows are discussed in more detail below.
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2.3 Register Windows

The SPARC architecture includes the concept of register windows. An overly simplistic way to

think of these windows is to imagine them as being an in�nite supply of "fresh" register sets

available for each subroutine to use. In reality, they are much more complicated.

The save instruction is used to obtain a new register window. This instruction decrements the

current window pointer, thus providing a new set of registers for use. This register set includes

eight fresh local registers for use exclusively by this subroutine. When done with a register set,

the restore instruction increments the current window pointer and the previous register set is once

again available.

The two primary issues complicating the use of register windows are that (1) the set of register

windows is �nite, and (2) some registers are shared between adjacent registers windows.

Because the set of register windows is �nite, it is possible to execute enough save instructions

without corresponding restore's to consume all of the register windows. This is easily accomplished

in a high level language because each subroutine typically performs a save instruction upon entry.

Thus having a subroutine call depth greater than the number of register windows will result in a

window overow condition. The window overow condition generates a trap which must be handled

in software. The window overow trap handler is responsible for saving the contents of the oldest

register window on the program stack.

Similarly, the subroutines will eventually complete and begin to perform restore's. If the restore

results in the need for a register window which has previously been written to memory as part of

an overow, then a window underow condition results. Just like the window overow, the window

underow condition must be handled in software by a trap handler. The window underow trap

handler is responsible for reloading the contents of the register window requested by the restore

instruction from the program stack.

The Window Invalid Mask (wim) and the Current Window Pointer (cwp) �eld in the psr are

used in conjunction to manage the �nite set of register windows and detect the window overow

and underow conditions. The cwp contains the index of the register window currently in use.

The save instruction decrements the cwp modulo the number of register windows. Similarly, the

restore instruction increments the cwp modulo the number of register windows. Each bit in the

wim represents represents whether a register window contains valid information. The value of 0

indicates the register window is valid and 1 indicates it is invalid. When a save instruction causes

the cwp to point to a register window which is marked as invalid, a window overow condition

results. Conversely, the restore instruction may result in a window underow condition.

Other than the assumption that a register window is always available for trap (i.e. interrupt)

handlers, the SPARC architecture places no limits on the number of register windows simultaneously

marked as invalid (i.e. number of bits set in the wim). However, RTEMS assumes that only

one register window is marked invalid at a time (i.e. only one bit set in the wim). This makes
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the maximum possible number of register windows available to the user while still meeting the

requirement that window overow and underow conditions can be detected.

The window overow and window underow trap handlers are a critical part of the run-time envi-

ronment for a SPARC application. The SPARC architectural speci�cation allows for the number

of register windows to be any power of two less than or equal to 32. The most common choice

for SPARC implementations appears to be 8 register windows. This results in the cwp ranging in

value from 0 to 7 on most implementations.

The second complicating factor is the sharing of registers between adjacent register windows. While

each register window has its own set of local registers, the input and output registers are shared

between adjacent windows. The output registers for register window N are the same as the input

registers for register window ((N - 1) modulo RW) where RW is the number of register windows. An

alternative way to think of this is to remember how parameters are passed to a subroutine on the

SPARC. The caller loads values into what are its output registers. Then after the callee executes

a save instruction, those parameters are available in its input registers. This is a very e�cient way

to pass parameters as no data is actually moved by the save or restore instructions.

2.4 Call and Return Mechanism

The SPARC architecture supports a simple yet e�ective call and return mechanism. A subroutine

is invoked via the call (call) instruction. This instruction places the return address in the caller's

output register 7 (o7). After the callee executes a save instruction, this value is available in input

register 7 (i7) until the corresponding restore instruction is executed.

The callee returns to the caller via a jmp to the return address. There is a delay slot following

this instruction which is commonly used to execute a restore instruction { if a register window was

allocated by this subroutine.

It is important to note that the SPARC subroutine call and return mechanism does not automat-

ically save and restore any registers. This is accomplished via the save and restore instructions

which manage the set of registers windows.

2.5 Calling Mechanism

All RTEMS directives are invoked using the regular SPARC calling convention via the call instruc-

tion.

2.6 Register Usage

As discussed above, the call instruction does not automatically save any registers. The save and

restore instructions are used to allocate and deallocate register windows. When a register window

is allocated, the new set of local registers are available for the exclusive use of the subroutine which

allocated this register set.
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2.7 Parameter Passing

RTEMS assumes that arguments are placed in the caller's output registers with the �rst argument

in output register 0 (o0), the second argument in output register 1 (o1), and so forth. Until the

callee executes a save instruction, the parameters are still visible in the output registers. After the

callee executes a save instruction, the parameters are visible in the corresponding input registers.

The following pseudo-code illustrates the typical sequence used to call a RTEMS directive with

three (3) arguments:

load third argument into o2

load second argument into o1

load first argument into o0

invoke directive

2.8 User-Provided Routines

All user-provided routines invoked by RTEMS, such as user extensions, device drivers, and MPCI

routines, must also adhere to these calling conventions.
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3 MemoryModel

3.1 Introduction

A processor may support any combination of memory models ranging from pure physical address-

ing to complex demand paged virtual memory systems. RTEMS supports a at memory model

which ranges contiguously over the processor's allowable address space. RTEMS does not support

segmentation or virtual memory of any kind. The appropriate memory model for RTEMS provided

by the targeted processor and related characteristics of that model are described in this chapter.

3.2 Flat Memory Model

The SPARC architecture supports a at 32-bit address space with addresses ranging from

0x00000000 to 0xFFFFFFFF (4 gigabytes). Each address is represented by a 32-bit value and

is byte addressable. The address may be used to reference a single byte, half-word (2-bytes), word

(4 bytes), or doubleword (8 bytes). Memory accesses within this address space are performed in big

endian fashion by the SPARC. Memory accesses which are not properly aligned generate a "memory

address not aligned" trap (type number 7). The following table lists the alignment requirements

for a variety of data accesses:

Data Type Alignment Requirement

byte 1

half-word 2

word 4

doubleword 8

Doubleword load and store operations must use a pair of registers as their source or destination.

This pair of registers must be an adjacent pair of registers with the �rst of the pair being even

numbered. For example, a valid destination for a doubleword load might be input registers 0 and

1 (i0 and i1). The pair i1 and i2 would be invalid. [NOTE: Some assemblers for the SPARC do

not generate an error if an odd numbered register is speci�ed as the beginning register of the pair.

In this case, the assembler assumes that what the programmer meant was to use the even-odd pair

which ends at the speci�ed register. This may or may not have been a correct assumption.]

RTEMS does not support any SPARC Memory Management Units, therefore, virtual memory or

segmentation systems involving the SPARC are not supported.
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4 Interrupt Processing

4.1 Introduction

Di�erent types of processors respond to the occurrence of an interrupt in its own unique fashion. In

addition, each processor type provides a control mechanism to allow for the proper handling of an

interrupt. The processor dependent response to the interrupt modi�es the current execution state

and results in a change in the execution stream. Most processors require that an interrupt handler

utilize some special control mechanisms to return to the normal processing stream. Although

RTEMS hides many of the processor dependent details of interrupt processing, it is important to

understand how the RTEMS interrupt manager is mapped onto the processor's unique architecture.

Discussed in this chapter are the SPARC's interrupt response and control mechanisms as they

pertain to RTEMS.

RTEMS and associated documentation uses the terms interrupt and vector. In the SPARC ar-

chitecture, these terms correspond to traps and trap type, respectively. The terms will be used

interchangeably in this manual.

4.2 Synchronous Versus Asynchronous Traps

The SPARC architecture includes two classes of traps: synchronous and asynchronous. Asyn-

chronous traps occur when an external event interrupts the processor. These traps are not associ-

ated with any instruction executed by the processor and logically occur between instructions. The

instruction currently in the execute stage of the processor is allowed to complete although subse-

quent instructions are annulled. The return address reported by the processor for asynchronous

traps is the pair of instructions following the current instruction.

Synchronous traps are caused by the actions of an instruction. The trap stimulus in this case

either occurs internally to the processor or is from an external signal that was provoked by the

instruction. These traps are taken immediately and the instruction that caused the trap is aborted

before any state changes occur in the processor itself. The return address reported by the processor

for synchronous traps is the instruction which caused the trap and the following instruction.

4.3 Vectoring of Interrupt Handler

Upon receipt of an interrupt the SPARC automatically performs the following actions:

� disables traps (sets the ET bit of the psr to 0),

� the S bit of the psr is copied into the Previous Supervisor Mode (PS) bit of the psr,

� the cwp is decremented by one (modulo the number of register windows) to activate a trap

window,

� the PC and nPC are loaded into local register 1 and 2 (l0 and l1),
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� the trap type (tt) �eld of the Trap Base Register (TBR) is set to the appropriate value, and

� if the trap is not a reset, then the PC is written with the contents of the TBR and the nPC

is written with TBR + 4. If the trap is a reset, then the PC is set to zero and the nPC is

set to 4.

Trap processing on the SPARC has two features which are noticeably di�erent than interrupt

processing on other architectures. First, the value of psr register in e�ect immediately before the

trap occurred is not explicitly saved. Instead only reversible alterations are made to it. Second,

the Processor Interrupt Level (pil) is not set to correspond to that of the interrupt being processed.

When a trap occurs, ALL subsequent traps are disabled. In order to safely invoke a subroutine

during trap handling, traps must be enabled to allow for the possibility of register window overow

and underow traps.

If the interrupt handler was installed as an RTEMS interrupt handler, then upon receipt of the in-

terrupt, the processor passes control to the RTEMS interrupt handler which performs the following

actions:

� saves the state of the interrupted task on it's stack,

� insures that a register window is available for subsequent traps,

� if this is the outermost (i.e. non-nested) interrupt, then the RTEMS interrupt handler

switches from the current stack to the interrupt stack,

� enables traps,

� invokes the vectors to a user interrupt service routine (ISR).

Asynchronous interrupts are ignored while traps are disabled. Synchronous traps which occur while

traps are disabled result in the CPU being forced into an error mode.

A nested interrupt is processed similarly with the exception that the current stack need not be

switched to the interrupt stack.

4.4 Traps and Register Windows

One of the register windows must be reserved at all times for trap processing. This is critical to

the proper operation of the trap mechanism in the SPARC architecture. It is the responsibility of

the trap handler to insure that there is a register window available for a subsequent trap before

re-enabling traps. It is likely that any high level language routines invoked by the trap handler

(such as a user-provided RTEMS interrupt handler) will allocate a new register window. The save

operation could result in a window overow trap. This trap cannot be correctly processed unless

(1) traps are enabled and (2) a register window is reserved for traps. Thus, the RTEMS interrupt

handler insures that a register window is available for subsequent traps before enabling traps and

invoking the user's interrupt handler.
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4.5 Interrupt Levels

Sixteen levels (0-15) of interrupt priorities are supported by the SPARC architecture with level

�fteen (15) being the highest priority. Level zero (0) indicates that interrupts are fully enabled.

Interrupt requests for interrupts with priorities less than or equal to the current interrupt mask

level are ignored.

Although RTEMS supports 256 interrupt levels, the SPARC only supports sixteen. RTEMS in-

terrupt levels 0 through 15 directly correspond to SPARC processor interrupt levels. All other

RTEMS interrupt levels are unde�ned and their behavior is unpredictable.

4.6 Disabling of Interrupts by RTEMS

During the execution of directive calls, critical sections of code may be executed. When these

sections are encountered, RTEMS disables interrupts to level seven (15) before the execution of

this section and restores them to the previous level upon completion of the section. RTEMS has

been optimized to insure that interrupts are disabled for less than TBD microseconds on a 15.0

Mhz ERC32 with zero wait states. These numbers will vary based the number of wait states

and processor speed present on the target board. [NOTE: The maximum period with interrupts

disabled is hand calculated. This calculation was last performed for Release 4.2.0-prerelease.]

[NOTE: It is thought that the length of time at which the processor interrupt level is elevated to

�fteen by RTEMS is not anywhere near as long as the length of time ALL traps are disabled as

part of the "ush all register windows" operation.]

Non-maskable interrupts (NMI) cannot be disabled, and ISRs which execute at this level MUST

NEVER issue RTEMS system calls. If a directive is invoked, unpredictable results may occur due

to the inability of RTEMS to protect its critical sections. However, ISRs that make no system calls

may safely execute as non-maskable interrupts.

4.7 Interrupt Stack

The SPARC architecture does not provide for a dedicated interrupt stack. Thus by default, trap

handlers would execute on the stack of the RTEMS task which they interrupted. This arti�cially

inates the stack requirements for each task since EVERY task stack would have to include enough

space to account for the worst case interrupt stack requirements in addition to it's own worst case

usage. RTEMS addresses this problem on the SPARC by providing a dedicated interrupt stack

managed by software.

During system initialization, RTEMS allocates the interrupt stack from the Workspace Area. The

amount of memory allocated for the interrupt stack is determined by the interrupt stack size �eld

in the CPU Con�guration Table. As part of processing a non-nested interrupt, RTEMS will switch

to the interrupt stack before invoking the installed handler.
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5 Default Fatal Error Processing

5.1 Introduction

Upon detection of a fatal error by either the application or RTEMS the fatal error manager is

invoked. The fatal error manager will invoke the user-supplied fatal error handlers. If no user-

supplied handlers are con�gured, the RTEMS provided default fatal error handler is invoked. If

the user-supplied fatal error handlers return to the executive the default fatal error handler is then

invoked. This chapter describes the precise operations of the default fatal error handler.

5.2 Default Fatal Error Handler Operations

The default fatal error handler which is invoked by the fatal error occurred directive when there

is no user handler con�gured or the user handler returns control to RTEMS. The default fatal

error handler disables processor interrupts to level 15, places the error code in g1, and goes into an

in�nite loop to simulate a halt processor instruction.
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6 Board Support Packages

6.1 Introduction

An RTEMS Board Support Package (BSP) must be designed to support a particular processor and

target board combination. This chapter presents a discussion of SPARC speci�c BSP issues. For

more information on developing a BSP, refer to the chapter titled Board Support Packages in the

RTEMS Applications User's Guide.

6.2 System Reset

An RTEMS based application is initiated or re-initiated when the SPARC processor is reset. When

the SPARC is reset, the processor performs the following actions:

� the enable trap (ET) of the psr is set to 0 to disable traps,

� the supervisor bit (S) of the psr is set to 1 to enter supervisor mode, and

� the PC is set 0 and the nPC is set to 4.

The processor then begins to execute the code at location 0. It is important to note that all �elds

in the psr are not explicitly set by the above steps and all other registers retain their value from

the previous execution mode. This is true even of the Trap Base Register (TBR) whose contents

reect the last trap which occurred before the reset.

6.3 Processor Initialization

It is the responsibility of the application's initialization code to initialize the TBR and install

trap handlers for at least the register window overow and register window underow conditions.

Traps should be enabled before invoking any subroutines to allow for register window management.

However, interrupts should be disabled by setting the Processor Interrupt Level (pil) �eld of the

psr to 15. RTEMS installs it's own Trap Table as part of initialization which is initialized with

the contents of the Trap Table in place when the rtems initialize executive directive was invoked.

Upon completion of executive initialization, interrupts are enabled.

If this SPARC implementation supports on-chip caching and this is to be utilized, then it should

be enabled during the reset application initialization code.

In addition to the requirements described in the Board Support Packages chapter of the {No value

for \LANGUAGE"} Applications User's Manual for the reset code which is executed before the

call to rtems initialize executive, the SPARC version has the following speci�c requirements:

� Must leave the S bit of the status register set so that the SPARC remains in the supervisor

state.
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� Must set stack pointer (sp) such that a minimum stack size of MINIMUM STACK SIZE

bytes is provided for the rtems initialize executive directive.

� Must disable all external interrupts (i.e. set the pil to 15).

� Must enable traps so window overow and underow conditions can be properly handled.

� Must initialize the SPARC's initial trap table with at least trap handlers for register window

overow and register window underow.
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7 ProcessorDependent Information Table

7.1 Introduction

Any highly processor dependent information required to describe a processor to RTEMS is provided

in the CPU Dependent Information Table. This table is not required for all processors supported

by RTEMS. This chapter describes the contents, if any, for a particular processor type.

7.2 CPU Dependent Information Table

The SPARC version of the RTEMS CPU Dependent Information Table is given by the C structure

de�nition is shown below:

typedef struct {

void (*pretasking_hook)( void );

void (*predriver_hook)( void );

void (*postdriver_hook)( void );

void (*idle_task)( void );

boolean do_zero_of_workspace;

unsigned32 interrupt_stack_size;

unsigned32 extra_mpci_receive_server_stack;

void * (*stack_allocate_hook)( unsigned32 );

void (*stack_free_hook)( void* );

/* end of fields required on all CPUs */

} rtems_cpu_table;

pretasking_hook is the address of the user provided routine which is invoked once RTEMS

initialization is complete but before interrupts and tasking are enabled. This

�eld may be NULL to indicate that the hook is not utilized.

predriver_hook is the address of the user provided routine which is invoked with tasking

enabled immediately before the MPCI and device drivers are initialized.

RTEMS initialization is complete, interrupts and tasking are enabled, but

no device drivers are initialized. This �eld may be NULL to indicate that

the hook is not utilized.

postdriver_hook is the address of the user provided routine which is invoked with tasking en-

abled immediately after the MPCI and device drivers are initialized. RTEMS

initialization is complete, interrupts and tasking are enabled, and the device

drivers are initialized. This �eld may be NULL to indicate that the hook is

not utilized.

idle_task is the address of the optional user provided routine which is used as the

system's IDLE task. If this �eld is not NULL, then the RTEMS default
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IDLE task is not used. This �eld may be NULL to indicate that the default

IDLE is to be used.

do_zero_of_workspace

indicates whether RTEMS should zero the Workspace as part of its initial-

ization. If set to TRUE, the Workspace is zeroed. Otherwise, it is not.

interrupt_stack_size

is the size of the RTEMS allocated interrupt stack in bytes. This value must

be at least as large as MINIMUM STACK SIZE.

extra_mpci_receive_server_stack

is the extra stack space allocated for the RTEMS MPCI receive server task

in bytes. The MPCI receive server may invoke nearly all directives and may

require extra stack space on some targets.

stack_allocate_hook

is the address of the optional user provided routine which allocates memory

for task stacks. If this hook is not NULL, then a stack free hook must be

provided as well.

stack_free_hook is the address of the optional user provided routine which frees memory for

task stacks. If this hook is not NULL, then a stack allocate hook must be

provided as well.
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8 MemoryRequirements

8.1 Introduction

Memory is typically a limited resource in real-time embedded systems, therefore, RTEMS can

be con�gured to utilize the minimum amount of memory while meeting all of the applications

requirements. Worksheets are provided which allow the RTEMS application developer to determine

the amount of RTEMS code and RAM workspace which is required by the particular con�guration.

Also provided are the minimum code space, maximum code space, and the constant data space

required by RTEMS.

8.2 Data Space Requirements

RTEMS requires a small amount of memory for its private variables. This data area must be in

RAM and is separate from the RTEMS RAM Workspace. The following illustrates the data space

required for all con�gurations of RTEMS:

� Data Space: 9059

8.3 Minimum andMaximum Code Space Requirements

A maximum con�guration of RTEMS includes the core and all managers, including the multipro-

cessing manager. Conversely, a minimum con�guration of RTEMS includes only the core and the

following managers: initialization, task, interrupt and fatal error. The following illustrates the code

space required by these con�gurations of RTEMS:

� Minimum Con�guration: 28,288

� Maximum Con�guration: 50,432

8.4 RTEMS Code SpaceWorksheet

The RTEMS Code Space Worksheet is a tool provided to aid the RTEMS application designer to

accurately calculate the memory required by the RTEMS run-time environment. RTEMS allows the

custom con�guration of the executive by optionally excluding managers which are not required by

a particular application. This worksheet provides the included and excluded size of each manager

in tabular form allowing for the quick calculation of any custom con�guration of RTEMS. The

RTEMS Code Space Worksheet is below:



26 RTEMS SPARC Applications Supplement

RTEMS Code Space Worksheet

Component Included Not Included Size

Core 20,336 NA

Initialization 1,408 NA

Task 4,496 NA

Interrupt 72 NA

Clock 576 NA

Timer 1,336 208

Semaphore 1,888 192

Message 2,032 320

Event 1,696 64

Signal 664 64

Partition 1,368 152

Region 1,736 176

Dual Ported Memory 872 152

I/O 1,144 00

Fatal Error 32 NA

Rate Monotonic 1,656 208

Multiprocessing 8,328 408

Total Code Space Requirements
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8.5 RTEMS RAMWorkspace Worksheet

The RTEMS RAMWorkspace Worksheet is a tool provided to aid the RTEMS application designer

to accurately calculate the minimum memory block to be reserved for RTEMS use. This worksheet

provides equations for calculating the amount of memory required based upon the number of objects

con�gured, whether for single or multiple processor versions of the executive. This information is

presented in tabular form, along with the �xed system requirements, allowing for quick calculation

of any application de�ned con�guration of RTEMS. The RTEMS RAM Workspace Worksheet is

provided below:

RTEMS RAM Workspace Worksheet

Description Equation Bytes Required

maximum tasks * 488 =

maximum timers * 68 =

maximum semaphores * 124 =

maximum message queues * 148 =

maximum regions * 144 =

maximum partitions * 56 =

maximum ports * 36 =

maximum periods * 36 =

maximum extensions * 64 =

Floating Point Tasks * 136 =

Task Stacks =

Total Single Processor Requirements

Description Equation Bytes Required

maximum nodes * 48 =

maximum global objects * 20 =

maximum proxies * 124 =

Total Multiprocessing Requirements

Fixed System Requirements 10,072

Total Single Processor Requirements

Total Multiprocessing Requirements

Minimum Bytes for RTEMS Workspace
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9 Timing Speci�cation

9.1 Introduction

This chapter provides information pertaining to the measurement of the performance of RTEMS,

the methods of gathering the timing data, and the usefulness of the data. Also discussed are other

time critical aspects of RTEMS that a�ect an applications design and ultimate throughput. These

aspects include determinancy, interrupt latency and context switch times.

9.2 Philosophy

Benchmarks are commonly used to evaluate the performance of software and hardware. Bench-

marks can be an e�ective tool when comparing systems. Unfortunately, benchmarks can also be

manipulated to justify virtually any claim. Benchmarks of real-time executives are di�cult to eval-

uate for a variety of reasons. Executives vary in the robustness of features and options provided.

Even when executives compare favorably in functionality, it is quite likely that di�erent methodolo-

gies were used to obtain the timing data. Another problem is that some executives provide times

for only a small subset of directives, This is typically justi�ed by claiming that these are the only

time-critical directives. The performance of some executives is also very sensitive to the number of

objects in the system. To obtain any measure of usefulness, the performance information provided

for an executive should address each of these issues.

When evaluating the performance of a real-time executive, one typically considers the following

areas: determinancy, directive times, worst case interrupt latency, and context switch time. Un-

fortunately, these areas do not have standard measurement methodologies. This allows vendors

to manipulate the results such that their product is favorably represented. We have attempted to

provide useful and meaningful timing information for RTEMS. To insure the usefulness of our data,

the methodology and de�nitions used to obtain and describe the data are also documented.

9.2.1 Determinancy

The correctness of data in a real-time system must always be judged by its timeliness. In many real-

time systems, obtaining the correct answer does not necessarily solve the problem. For example,

in a nuclear reactor it is not enough to determine that the core is overheating. This situation must

be detected and acknowledged early enough that corrective action can be taken and a meltdown

avoided.

Consequently, a system designer must be able to predict the worst-case behavior of the application

running under the selected executive. In this light, it is important that a real-time system perform

consistently regardless of the number of tasks, semaphores, or other resources allocated. An impor-

tant design goal of a real-time executive is that all internal algorithms be �xed-cost. Unfortunately,



30 RTEMS SPARC Applications Supplement

this goal is di�cult to completely meet without sacri�cing the robustness of the executive's feature

set.

Many executives use the term deterministic to mean that the execution times of their services can

be predicted. However, they often provide formulas to modify execution times based upon the

number of objects in the system. This usage is in sharp contrast to the notion of deterministic

meaning �xed cost.

Almost all RTEMS directives execute in a �xed amount of time regardless of the number of objects

present in the system. The primary exception occurs when a task blocks while acquiring a resource

and speci�es a non-zero timeout interval.

Other exceptions are message queue broadcast, obtaining a variable length memory block, object

name to ID translation, and deleting a resource upon which tasks are waiting. In addition, the time

required to service a clock tick interrupt is based upon the number of timeouts and other "events"

which must be processed at that tick. This second group is composed primarily of capabilities

which are inherently non-deterministic but are infrequently used in time critical situations. The

major exception is that of servicing a clock tick. However, most applications have a very small

number of timeouts which expire at exactly the same millisecond (usually none, but occasionally

two or three).

9.2.2 Interrupt Latency

Interrupt latency is the delay between the CPU's receipt of an interrupt request and the execution

of the �rst application-speci�c instruction in an interrupt service routine. Interrupts are a critical

component of most real-time applications and it is critical that they be acted upon as quickly as

possible.

Knowledge of the worst case interrupt latency of an executive aids the application designer in

determining the maximum period of time between the generation of an interrupt and an interrupt

handler responding to that interrupt. The interrupt latency of an system is the greater of the

executive's and the applications's interrupt latency. If the application disables interrupts longer

than the executive, then the application's interrupt latency is the system's worst case interrupt

disable period.

The worst case interrupt latency for a real-time executive is based upon the following components:

� the longest period of time interrupts are disabled by the executive,

� the overhead required by the executive at the beginning of each ISR,

� the time required for the CPU to vector the interrupt, and

� for some microprocessors, the length of the longest instruction.

The �rst component is irrelevant if an interrupt occurs when interrupts are enabled, although it

must be included in a worst case analysis. The third and fourth components are particular to a
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CPU implementation and are not dependent on the executive. The fourth component is ignored

by this document because most applications use only a subset of a microprocessor's instruction

set. Because of this the longest instruction actually executed is application dependent. The worst

case interrupt latency of an executive is typically de�ned as the sum of components (1) and (2).

The second component includes the time necessry for RTEMS to save registers and vector to the

user-de�ned handler. RTEMS includes the third component, the time required for the CPU to

vector the interrupt, because it is a required part of any interrupt.

Many executives report the maximum interrupt disable period as their interrupt latency and ignore

the other components. This results in very low worst-case interrupt latency times which are not

indicative of actual application performance. The de�nition used by RTEMS results in a higher

interrupt latency being reported, but accurately reects the longest delay between the CPU's receipt

of an interrupt request and the execution of the �rst application-speci�c instruction in an interrupt

service routine.

The actual interrupt latency times are reported in the Timing Data chapter of this supplement.

9.2.3 Context Switch Time

An RTEMS context switch is de�ned as the act of taking the CPU from the currently executing

task and giving it to another task. This process involves the following components:

� Saving the hardware state of the current task.

� Optionally, invoking the TASK SWITCH user extension.

� Restoring the hardware state of the new task.

RTEMS de�nes the hardware state of a task to include the CPU's data registers, address registers,

and, optionally, oating point registers.

Context switch time is often touted as a performance measure of real-time executives. However,

a context switch is performed as part of a directive's actions and should be viewed as such when

designing an application. For example, if a task is unable to acquire a semaphore and blocks,

a context switch is required to transfer control from the blocking task to a new task. From the

application's perspective, the context switch is a direct result of not acquiring the semaphore. In

this light, the context switch time is no more relevant than the performance of any other of the

executive's subroutines which are not directly accessible by the application.

In spite of the inappropriateness of using the context switch time as a performance metric, RTEMS

context switch times for oating point and non-oating points tasks are provided for comparison

purposes. Of the executives which actually support oating point operations, many do not report

context switch times for oating point context switch time. This results in a reported context

switch time which is meaningless for an application with oating point tasks.

The actual context switch times are reported in the Timing Data chapter of this supplement.
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9.2.4 Directive Times

Directives are the application's interface to the executive, and as such their execution times are

critical in determining the performance of the application. For example, an application using a

semaphore to protect a critical data structure should be aware of the time required to acquire and

release a semaphore. In addition, the application designer can utilize the directive execution times

to evaluate the performance of di�erent synchronization and communication mechanisms.

The actual directive execution times are reported in the Timing Data chapter of this supplement.

9.3 Methodology

9.3.1 Software Platform

The RTEMS timing suite is written in C. The overhead of passing arguments to RTEMS by C is

not timed. The times reported represent the amount of time from entering to exiting RTEMS.

The tests are based upon one of two execution models: (1) single invocation times, and (2) average

times of repeated invocations. Single invocation times are provided for directives which cannot

easily be invoked multiple times in the same scenario. For example, the times reported for entering

and exiting an interrupt service routine are single invocation times. The second model is used for

directives which can easily be invoked multiple times in the same scenario. For example, the times

reported for semaphore obtain and semaphore release are averages of multiple invocations. At least

100 invocations are used to obtain the average.

9.3.2 Hardware Platform

Since RTEMS supports a variety of processors, the hardware platform used to gather the benchmark

times must also vary. Therefore, for each processor supported the hardware platform must be

de�ned. Each de�nition will include a brief description of the target hardware platform including

the clock speed, memory wait states encountered, and any other pertinent information. This

de�nition may be found in the processor dependent timing data chapter within this supplement.

9.3.3 What is measured?

An e�ort was made to provide execution times for a large portion of RTEMS. Times were provided

for most directives regardless of whether or not they are typically used in time critical code. For

example, execution times are provided for all object create and delete directives, even though these

are typically part of application initialization.

The times include all RTEMS actions necessary in a particular scenario. For example, all times for

blocking directives include the context switch necessary to transfer control to a new task. Under

no circumstances is it necessary to add context switch time to the reported times.
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The following list describes the objects created by the timing suite:

� All tasks are non-oating point.

� All tasks are created as local objects.

� No timeouts are used on blocking directives.

� All tasks wait for objects in FIFO order.

In addition, no user extensions are con�gured.

9.3.4 What is not measured?

The times presented in this document are not intended to represent best or worst case times, nor

are all directives included. For example, no times are provided for the initialize executive and

fatal error occurred directives. Other than the exceptions detailed in the Determinancy section, all

directives will execute in the �xed length of time given.

Other than entering and exiting an interrupt service routine, all directives were executed from

tasks and not from interrupt service routines. Directives invoked from ISRs, when allowable, will

execute in slightly less time than when invoked from a task because rescheduling is delayed until

the interrupt exits.

9.3.5 Terminology

The following is a list of phrases which are used to distinguish individual execution paths of the

directives taken during the RTEMS performance analysis:

another task The directive was performed on a task other than the calling task.

available A task attempted to obtain a resource and immediately acquired it.

blocked task The task operated upon by the directive was blocked waiting for a resource.

caller blocks The requested resoure was not immediately available and the calling task

chose to wait.

calling task The task invoking the directive.

messages ushed One or more messages was ushed from the message queue.

no messages ushed No messages were ushed from the message queue.

not available A task attempted to obtain a resource and could not immediately acquire

it.

no reschedule The directive did not require a rescheduling operation.

NO WAIT A resource was not available and the calling task chose to return immediately

via the NO WAIT option with an error.
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obtain current The current value of something was requested by the calling task.

preempts caller The release of a resource caused a task of higher priority than the calling to

be readied and it became the executing task.

ready task The task operated upon by the directive was in the ready state.

reschedule The actions of the directive necessitated a rescheduling operation.

returns to caller The directive succeeded and immediately returned to the calling task.

returns to interrupted task

The instructions executed immediately following this interrupt will be in the

interrupted task.

returns to nested interrupt

The instructions executed immediately following this interrupt will be in a

previously interrupted ISR.

returns to preempting task

The instructions executed immediately following this interrupt or signal han-

dler will be in a task other than the interrupted task.

signal to self The signal set was sent to the calling task and signal processing was enabled.

suspended task The task operated upon by the directive was in the suspended state.

task readied The release of a resource caused a task of lower or equal priority to be readied

and the calling task remained the executing task.

yield The act of attempting to voluntarily release the CPU.
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10 ERC32Timing Data

10.1 Introduction

The timing data for RTEMS on the ERC32 implementation of the SPARC architecture is provided

along with the target dependent aspects concerning the gathering of the timing data. The hardware

platform used to gather the times is described to give the reader a better understanding of each

directive time provided. Also, provided is a description of the interrupt latency and the context

switch times as they pertain to the SPARC version of RTEMS.

10.2 Hardware Platform

All times reported in this chapter were measured using the SPARC Instruction Simulator (SIS)

developed by the European Space Agency. SIS simulates the ERC32 { a custom low power im-

plementation combining the Cypress 90C601 integer unit, the Cypress 90C602 oating point unit,

and a number of peripherals such as counter timers, interrupt controller and a memory controller.

For the RTEMS tests, SIS is con�gured with the following characteristics:

� 15 Mhz clock speed

� 0 wait states for PROM accesses

� 0 wait states for RAM accesses

The ERC32's General Purpose Timer was used to gather all timing information. This timer was

programmed to operate with one microsecond accuracy. All sources of hardware interrupts were

disabled, although traps were enabled and the interrupt level of the SPARC allows all interrupts.

10.3 Interrupt Latency

The maximum period with traps disabled or the processor interrupt level set to it's highest value

inside RTEMS is less than TBD microseconds including the instructions which disable and re-

enable interrupts. The time required for the ERC32 to vector an interrupt and for the RTEMS

entry overhead before invoking the user's trap handler are a total of 8 microseconds. These combine

to yield a worst case interrupt latency of less than TBD + 8 microseconds at 15.0 Mhz. [NOTE:

The maximum period with interrupts disabled was last determined for Release 4.2.0-prerelease.]

The maximum period with interrupts disabled within RTEMS is hand-timed with some assistance

from SIS. The maximum period with interrupts disabled with RTEMS occurs during a context

switch when traps are disabled to ush all the register windows to memory. The length of time spent

ushing the register windows varies based on the number of windows which must be ushed. Based

on the information reported by SIS, it takes from 4.0 to 18.0 microseconds (37 to 122 instructions)

to ush the register windows. It takes approximately 41 CPU cycles (2.73 microseconds) to ush

each register window set to memory. The register window ush operation is heavily memory bound.
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[NOTE: All traps are disabled during the register window ush thus disabling both software gener-

ate traps and external interrupts. During a normal RTEMS critical section, the processor interrupt

level (pil) is raised to level 15 and traps are left enabled. The longest path for a normal critical

section within RTEMS is less than 50 instructions.]

The interrupt vector and entry overhead time was generated on the SIS benchmark platform using

the ERC32's ability to forcibly generate an arbitrary interrupt as the source of the "benchmark"

interrupt.

10.4 Context Switch

The RTEMS processor context switch time is 10 microseconds on the SIS benchmark platform

when no oating point context is saved or restored. Additional execution time is required when

a TASK SWITCH user extension is con�gured. The use of the TASK SWITCH extension is ap-

plication dependent. Thus, its execution time is not considered part of the raw context switch

time.

Since RTEMS was designed speci�cally for embedded missile applications which are oating point

intensive, the executive is optimized to avoid unnecessarily saving and restoring the state of the nu-

meric coprocessor. The state of the numeric coprocessor is only saved when an FLOATING POINT

task is dispatched and that task was not the last task to utilize the coprocessor. In a system with

only one FLOATING POINT task, the state of the numeric coprocessor will never be saved or

restored. When the �rst FLOATING POINT task is dispatched, RTEMS does not need to save

the current state of the numeric coprocessor.

The following table summarizes the context switch times for the ERC32 benchmark platform:

No Floating Point Contexts 21

Floating Point Contexts

restore �rst FP task 26

save initialized, restore initialized 24

save idle, restore initialized 23

save idle, restore idle 33

10.5 Directive Times

This sections is divided into a number of subsections, each of which contains a table listing the

execution times of that manager's directives.
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10.6 Task Manager

TASK CREATE 59

TASK IDENT 163

TASK START 30

TASK RESTART

calling task 64

suspended task { returns to caller 36

blocked task { returns to caller 47

ready task { returns to caller 37

suspended task { preempts caller 77

blocked task { preempts caller 84

ready task { preempts caller 75

TASK DELETE

calling task 91

suspended task 47

blocked task 50

ready task 51

TASK SUSPEND

calling task 56

returns to caller 16

TASK RESUME

task readied { returns to caller 17

task readied { preempts caller 52

TASK SET PRIORITY

obtain current priority 10

returns to caller 25

preempts caller 67

TASK MODE

obtain current mode 5

no reschedule 6

reschedule { returns to caller 9

reschedule { preempts caller 42

TASK GET NOTE 10

TASK SET NOTE 10

TASK WAKE AFTER

yield { returns to caller 6

yield { preempts caller 49

TASK WAKE WHEN 75



38 RTEMS SPARC Applications Supplement

10.7 Interrupt Manager

It should be noted that the interrupt entry times include vectoring the interrupt handler.

Interrupt Entry Overhead

returns to nested interrupt 7

returns to interrupted task 8

returns to preempting task 8

Interrupt Exit Overhead

returns to nested interrupt 5

returns to interrupted task 7

returns to preempting task 14

10.8 Clock Manager

CLOCK SET 33

CLOCK GET 4

CLOCK TICK 6

10.9 Timer Manager

TIMER CREATE 11

TIMER IDENT 159

TIMER DELETE

inactive 15

active 17

TIMER FIRE AFTER

inactive 21

active 23

TIMER FIRE WHEN

inactive 34

active 34

TIMER RESET

inactive 20

active 22

TIMER CANCEL

inactive 10

active 13
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10.10 Semaphore Manager

SEMAPHORE CREATE 19

SEMAPHORE IDENT 171

SEMAPHORE DELETE 19

SEMAPHORE OBTAIN

available 12

not available { NO WAIT 12

not available { caller blocks 67

SEMAPHORE RELEASE

no waiting tasks 14

task readied { returns to caller 23

task readied { preempts caller 57

10.11 Message Manager

MESSAGE QUEUE CREATE 114

MESSAGE QUEUE IDENT 159

MESSAGE QUEUE DELETE 25

MESSAGE QUEUE SEND

no waiting tasks 36

task readied { returns to caller 38

task readied { preempts caller 76

MESSAGE QUEUE URGENT

no waiting tasks 36

task readied { returns to caller 38

task readied { preempts caller 76

MESSAGE QUEUE BROADCAST

no waiting tasks 15

task readied { returns to caller 42

task readied { preempts caller 83

MESSAGE QUEUE RECEIVE

available 30

not available { NO WAIT 13

not available { caller blocks 67

MESSAGE QUEUE FLUSH

no messages ushed 9

messages ushed 13
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10.12 Event Manager

EVENT SEND

no task readied 9

task readied { returns to caller 22

task readied { preempts caller 58

EVENT RECEIVE

obtain current events 1

available 10

not available { NO WAIT 9

not available { caller blocks 60

10.13 Signal Manager

SIGNAL CATCH 6

SIGNAL SEND

returns to caller 14

signal to self 22

EXIT ASR OVERHEAD

returns to calling task 27

returns to preempting task 56

10.14 Partition Manager

PARTITION CREATE 34

PARTITION IDENT 159

PARTITION DELETE 14

PARTITION GET BUFFER

available 12

not available 10

PARTITION RETURN BUFFER 10
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10.15 Region Manager

REGION CREATE 22

REGION IDENT 162

REGION DELETE 14

REGION GET SEGMENT

available 19

not available { NO WAIT 19

not available { caller blocks 67

REGION RETURN SEGMENT

no waiting tasks 17

task readied { returns to caller 44

task readied { preempts caller 77

10.16 Dual-Ported Memory Manager

PORT CREATE 14

PORT IDENT 159

PORT DELETE 13

PORT INTERNAL TO EXTERNAL 9

PORT EXTERNAL TO INTERNAL 9

10.17 I/OManager

IO INITIALIZE 2

IO OPEN 1

IO CLOSE 1

IO READ 1

IO WRITE 1

IO CONTROL 1
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10.18 Rate Monotonic Manager

RATE MONOTONIC CREATE 12

RATE MONOTONIC IDENT 159

RATE MONOTONIC CANCEL 14

RATE MONOTONIC DELETE

active 19

inactive 16

RATE MONOTONIC PERIOD

initiate period { returns to caller 20

conclude period { caller blocks 55

obtain status 9
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Command andVariable Index

There are currently no Command and Variable Index entries.
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Concept Index

There are currently no Concept Index entries.
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