
Tool Support for the Construction of

Statically Analysable Hard Real-Time Ada Systems�

T. Vardanega
Spacecraft Control and Data Systems Division

European Space Agency Research & Technology Centre (ESTEC)

Keplerlaan 1, 2201 AZ Noordwijk (NL)
voice: +31-71-5655331 fax: +31-71-5654295

email: tullio@wd.estec.esa.nl

Technical Note

Abstract

This paper maintains that fixed-priority process-based preemptive scheduling is, arguably, more conve-
nient, flexible and responsive than conventional cyclic scheduling for the construction of new-generation
software-intensive satellite control systems. Predictable usage of preemptive priority-based scheduling,
however, demands the support of mature static analysis techniques. Worst-case response time analysis mod-
els can be constructed which minimise the embodied pessimism and maximise useful processing. This paper
presents the design and implementation of an Ada programming model and associated worst-case response
time analysis tools aimed to support the construction of highly-predictable, highly-efficient on-board con-
trol systems.

1 Introduction

Recent studies (cf eg: [12]) have shown that software embedded on board of modern satellite control sys-
tems plays an increasingly important and pervasive role in the operation of the system. Distinct demands
for increased responsiveness and maximised mission product, in fact, call for the progressive move of crit-
ical functions from ground to on-board software. As a result of this evolution, new-generation on-board
systems appear to be:

� increasingly concurrent, as they are to perform, in parallel, a growing variety of control activities
featuring a broad range of activation and processing requirements,

� and distinctly hard real-time, in that an important proportion of their software components are subject
to mission-critical requirements on timeliness of execution.

This paper presents the principal technical choices made by a project aimed at supporting the develop-
ment of hard real-time multi-tasking on-board software systems. The project considered traditional devel-
opment and scheduling methods as being too poor, rigid and unyielding in the face of the flexibility and

�The work described in this paper has been performed under ESA Research & Technology Center contract no. 9848/92/NL/FM.
An executive summary of this paper is to appear in the proceedings of the 17th Real-Time Systems Symposium (RTSS’96).

1

Tool Support for the Construction of Statically Analysable HRT Ada Systems Technical Note

responsiveness required of future systems (cf eg: [8]) and also largely unsupportive of sufficient functional
cohesion. Novel engineering techniques for the construction, analysis and execution of hard real-time sys-
tems, on the other hand, had consistently emerged from the research community over the last decade (cf
eg: [3, 4, 5, 10] and seemed mature enough for deployment.

The selected approach, which retained Ada [2] as the programming language of choice, was centred
around fixed-priority preemptive scheduling augmented with priority ceiling emulation [5] and worst-case
response time analysis [1, 7, 10]. (The rationale for this choice is discussed at length in [11].) The feasibil-
ity and performance of the chosen approach were initially demonstrated by a couple of ESA-funded case
studies (cf [13, 14, 19]) and a few other independent industrial developments.

Use of Ada tasking in space and avionic applications was historically tied to the criticisms of being too
complex and non-deterministic and relying on too extensive and inefficient run-time support. The project’s
initial results seem to dismiss a great deal of such criticisms. This paper presents the distinguishing features
of the proposed concept and its anticipated benefits.

The rest of the paper is structured as follows: section 2 describes components, properties and imple-
mentation of the chosen programming model and the associated tool-set concept; section 3 discusses the
requirements on and the definition of the tools and techniques for the support of static scheduling analy-
sis; section 4, finally, presents the current status with the tool-set implementation and outlines its projected
scope of application.

2 Programming Model

2.1 Programming Model Definition

Typical on-board applications (cf eg: [11]) are predominantly comprised of non-independent activities which
exhibit a varying amount of periodic and sporadic activation requirements and an equally varied degree of
timing criticality.

Attitude control functions map to periodic activities whose activation needs to be as jitter-less as possi-
ble. Communication control functions map to sporadic activities whose activation requirements stem from
both external (eg: interrupts) and internal events (eg: synchronisation). Periodic and sporadic activities of-
ten require some form of explicit cooperation to achieve data-oriented synchronisation and/or enforcement
of precedence activation constraints.

Past and current evidence show that such an application model, albeit with a certain amount of bending
and twisting, may indeed be implemented upon a single-process cyclic scheduling system. It is equally ap-
parent, though, that the same application model would also nicely fit a simple and yet slightly augmented
form of Ada tasking based on the Ada 83 concurrency model, now fully supported by the revised Ada stan-
dard [18].

An Ada programming environment specialising in the support of such an application model has been
built for on-board systems based on the 32-bit Embedded Real-Time Computing Core (ERC32) [16]. The
ERC32 core is a SPARC v7 based chipset inclusive of Integer Unit, Floating Point Unit and Memory Con-
troller, intended for use in no-cache no-MMU single-board computers for highly predictable high-profile
new-generation on-board systems. Amongst other features, which are not discussed in this paper, the ERC32
chipset and associated programming environment are designed to allow exploitation of the ATAC (Ada
Tasking Coprocessor) chip [9], a memory-mapped hardware device which performs Ada 83 tasking oper-
ations on behalf of classical software run-time systems.

In the ERC32 programming model, every distinct processing activity in the application model is mod-
elled as an independent thread of control and maps to one designated type of Ada task. Tasks in the model

Date: Revision(August 20, 1996) Ref: WSD/TV/xxx Page: 2 of 18

Tool Support for the Construction of Statically Analysable HRT Ada Systems Technical Note

are required to be library-level, flat, static, infinite tasks. Three types of task are required to support the
application model:

� cyclic tasks to model periodic activities;

� interrupt sporadic tasks to model interrupt-driven sporadic activities;

� software sporadic tasks to model synchronisation-driven sporadic activities.

The typical profiles for each of such task types are as shown in template 2.1.1, 2.1.2 and 2.1.3 in the
following. The statements in bold-face in the profiles highlight the places at which the task’s execution
requires explicit run-time system support. This information will be used later in this paper to illustrate the
foundations to and the operation of the chosen approach to static scheduling analysis.

Template 2.1.1 Periodic Task Template

task CYCLIC is
pragma priority (< value >);

end CYCLIC;

task body CYCLIC is
– declare local variables

begin
– set up application-wide start time To

loop
Delay Until T ;
– execute periodic actions
T := T + PERIOD;

end loop;
end CYCLIC;

The interrupt model supported by the programming model was designed to take maximum advantage of
the (optional) presence of the ATAC chip. In the adopted model, a library-level parameterless procedure is
to be attached to the designated interrupt line. In presence of the ATAC, the procedure would be compiled in
an ATAC-internal dummy task. The ATAC would then capture the incoming interrupt, activate the dummy
task, ready the interrupt sporadic task and initiate the rendez-vous between them.

In absence of the ATAC, the interrupt would be captured by the ERC32 Memory Controller and cause
the software run-time to initiate the accept statement in the interrupt sporadic task.

In order for both options to be completely interchangeable without the need for any source code mod-
ification, no user code is allowed in the library procedure.

Tasks in the model are not allowed to communicate directly with one another. Communication and
synchronisation between tasks take place via dedicated server tasks which can be implemented as Ada 95
protected objects as well as by Ada 83 passive tasks. This choice buys the system an important reduction
in the required run-time support and, thanks to the use of immediate priority ceiling inheritance (IPCI) [5],
it also defeats non-determinism by guaranteeing bounded blocking and priority-inversion-free service.

� Tasks exchange shared data in a protected manner by means of mutually-exclusive calls to dedicated
resource server tasks; resource server tasks may offer a variety of services, each represented by one
distinct entry; entries to a resource server task must rigorously be unguarded (cf profile 2.1.5).

Date: Revision(August 20, 1996) Ref: WSD/TV/xxx Page: 3 of 18

Tool Support for the Construction of Statically Analysable HRT Ada Systems Technical Note

Template 2.1.2 Interrupt Sporadic Task Template

task INTERRUPT SPORADIC is
pragma priority (An Interrupt Priority);

– System.Interrupt Priority range 49 .. 63
entry ISR;

for ISR’Address use TRAP NUMBER;
– Interrupt Manager.Interrupt Id range 1 .. 15

end INTERRUPT SPORADIC;

task body INTERRUPT SPORADIC is
– declare local variables

begin
loop

accept ISR do
– immediate interrupt service
– executed at priority Interrupt Manager.Interrupt Id

end ISR;
– interrupt service processing
– executed at priority An Interrupt Priority

end loop;
end INTERRUPT SPORADIC;

procedure LIBRARY LEVEL is
– must be parameterless to ensure ATAC compatibility
begin

INTERRUPT SPORADIC.ISR;
end;

Interrupt Manager.Attach Handler
(HANDLER=> LIBRARY LEVEL’Address,
INTERRUPT=> TRAP NUMBER,
PRIORITY=> An Interrupt Priority,
...);

– procedure LIBRARY LEVEL must be explicitly attached to designated trap

Date: Revision(August 20, 1996) Ref: WSD/TV/xxx Page: 4 of 18

Tool Support for the Construction of Statically Analysable HRT Ada Systems Technical Note

� Tasks synchronise with one another by means of mutually-exclusive calls to dedicated synchronisa-
tion server tasks; the model requires individual synchronisation server tasks to provide one guarded
entry for exclusive use by the designated software sporadic task and one unguarded entry for use by
the releasing task(s) (cf profile 2.1.4).

Template 2.1.3 Software Sporadic Task Template

task SOFTWARE SPORADIC is
pragma priority (< value >);

end SOFTWARE SPORADIC;

task body SOFTWARE SPORADIC is
– declare local variables

begin
– set up application-wide start time To

loop
SYNCHRONISATION PO.WAIT (< parameters >);
– execute sporadic action

end loop;
end SOFTWARE SPORADIC;

2.2 Programming Model Implementation

Implementation of the ERC32 programming model as above outlined requires a number of distinct enhance-
ments to a conventional Ada 83 compilation system (ACS). The principal modifications and distinguishing
features of this implementation are briefly discussed in the following:

Support for ERC32 Targets with and without ATAC :
ERC32 target boards may include the Ada Tasking Coprocessor (ATAC) chip; the ERC32 ACS sup-
ports the presence of the ATAC and is able to devolve the tasking operations to the ATAC; the ERC32
programming model is designed so as to achieve source-code invariance across targets with or with-
out the ATAC: the final decision as to whether to run on the ATAC run-time or stay with the software
run-time is made at bind time.

Support for Deadline-Monotonic Scheduling :
The ERC32 ACS’s main aim is to support the construction of statically analysable systems built in
accordance with deadline-monotonic scheduling (DMS) theory; the provided support includes:

Passive Task Optimisation :
The ERC32 ACS provides support for passive task optimisation; this is achieved by inclusion
of pragma passive in the relevant task’s specification which, in turn, results in compile-time
checks on the passive task structure (including enforcement of related usage restrictions) and
the generation of non-tasking light-weight run-time system implementation of its dynamic se-
mantics; priority-inversion-free mutually exclusive access to passive tasks is achieved by use
of IPCI.

Worst-Case Execution Profile Extraction and Timing Data File :
The ERC32 ACS supports automated extraction of worst-case execution time (WCET) of (por-

Date: Revision(August 20, 1996) Ref: WSD/TV/xxx Page: 5 of 18

Tool Support for the Construction of Statically Analysable HRT Ada Systems Technical Note

Template 2.1.4 Synchronisation Passive Task Template

task SYNCHRONISATION PO is
pragma priority (Ceiling Priority);
pragma passive;
entry WAIT (< parameters >);
entry SIGNAL (< parameters >);

end SYNCHRONISATION PO;

task body SYNCHRONISATION PO is
– declare local variables

begin
loop

select
when (Barrier) =>

accept WAIT (< parameters >) do
– release actions

or
accept SIGNAL (< parameters >) do

– lower Barrier
or

terminate;
end select;

end loop;
end SYNCHRONISATION PO;

Template 2.1.5 Resource Control Passive Task Template

task RESOURCE PO is
pragma priority (Ceiling Priority);
pragma passive;
entry SERVICE (< parameters >);
...

end RESOURCE PO;

task body RESOURCE PO is
– declare local variables

begin
loop

select
accept SERVICE (< parameters >) do

– service actions
or

...
or

terminate;
end select;

end loop;
end RESOURCE PO;

Date: Revision(August 20, 1996) Ref: WSD/TV/xxx Page: 6 of 18

Tool Support for the Construction of Statically Analysable HRT Ada Systems Technical Note

tions of) Ada programs; this includes: 1/ provision of options to restrict WCET-defeating code-
motion optimisations; 2/ enforcement of programming-model coding restrictions and associ-
ated templates; 3/ automated generation, storage and retrieval of the timing information de-
scribing the worst-case execution profile of the application (aspects of generation and analy-
sis of such profiles are discussed in section 3.3); 4/ provision of timing measurements for the
set of run-time system primitive needed to support the tasking operations allowed by the pro-
gramming model: the set of required primitives, derived from analysis of the task templates in
section 2.1, is reported in table 1.

Time-Bounded Run-Time Subset and Interval Timer Model :
The set of ERC32 ACS run-time system primitives and tasking operations and the associated
data structures have been re-designed so as to guarantee minimum deterministic worst-case ex-
ecution time.
The ERC32 ACS run-time system supports the Interval Timer model instead of the conven-
tional Periodic Clock model. In the Interval Timer model, interrupts off the real-time clock are
triggered only as suspended tasks need to be readied. This buys the application a significant
reduction of run-time system overhead.

Schedule Trace :
The ERC32 ACS run-time supports optional selective tracing of task scheduling activity with
the trace data stored in an in-memory circular buffer; enable/disable of tracing is performed
both from the debugger and via an ad-hoc programmatic interface; the size of the trace buffer
is set via a binder option.

Package Real Time :
The ERC32 ACS provides a user-visible run-time support package containing type Time, sup-
porting the 1 �s-accuracy ERC32 real-time clock, the associated monotonic time representation
with related relational and arithmetics operators and general-purpose timers. Periodic activities
which require jitter-less release must call the Delay Until(<absolute time>) procedure pro-
vided by the package in preference to the standard Ada 83 delay (<relative time>), as shown
in task template 2.1.1.

The ERC32 programming model was implemented on top of a small, highly efficient and fully char-
acterised Ada run-time system. All of the required tasking primitives were designed so as to provide for
optimised bounds to worst-case execution time,

In the following, a brief description is provided for the tasking primitives which contribute to the de-
termination of the run-time scheduling behaviour of the ERC32 system (cf table 1).

Cyclic tasks call primitive Delay Until to command the time of their next release and the wake-up sys-
tem uses an Interval Timer instead of the conventional periodic clock. The overall worst-case execution
time of the primitive results from the sum of two values: the placement of the task control structure in the
interval time queue (Delay Until(Enter)) and the return from the call upon release (Delay Until(Exit)).

Interrupts off the Interval Timer are serviced by primitive Timer Interrupt. Primitive Ready After Delay
change the released cyclic tasks’ status to ready. On modifications to the ready status list, primitive Sched Select
is invoked to determine the ”best-task-out”; this may incur preemptive switch to a new running task, which
is performed by primitive Context Switch.

Primitive Interrupt Handling initiates an interrupt accept statement in the body of the designated in-
terrupt sporadic task, while Interrupt Sporadic Wait(Enter) and Interrupt Sporadic Wait(Exit) allow
control to respectively enter and leave the interrupt accept body.

Date: Revision(August 20, 1996) Ref: WSD/TV/xxx Page: 7 of 18

Tool Support for the Construction of Statically Analysable HRT Ada Systems Technical Note

Table 1: Required Run-Time System Primitives

Primitive RTS Operation Required for Task Template

Delay Until (Enter at Top) 2.1.1
Delay Until (Enter Lower) 2.1.1
Delay Until (Exit) 2.1.1
Timer Interrupt 2.1.1
Ready After Delay 2.1.1
Sched Select 2.1.1, 2.1.2, 2.1.3
Context Switch 2.1.1, 2.1.2, 2.1.3
Interrupt Handling Overhead 2.1.2
Int Sporadic Wait (Enter) 2.1.2
Int Sporadic Wait (Exit) 2.1.2
PO Entry 2.1.3, 2.1.4, 2.1.5 (, 2.1.1, 2.1.2)
PO Exit 2.1.3, 2.1.4, 2.1.5 (, 2.1.1, 2.1.2)
Sem.Wait (Enter) 2.1.3, 2.1.4
Sem.Wait (Exit) 2.1.3, 2.1.4
Sem.Signal 2.1.4
Entry Queue Mgmt 2.1.3, 2.1.4

PO Entry and PO Exit control respectively the access to and the release of server tasks and include
the relevant raising and lowering of the server’s priority.

The blocking call to a synchronisation server task is implemented by use of a primitive semaphore struc-
ture: the software sporadic task’s call to one server’s guarded entry translates into the caller’s suspension
on the primitive semaphore (Sem.Wait(Enter)). Arrival of the releasing call causes the suspended task to
be freed from the semaphore’s queue (Entry Queue Mgmt, which includes call to Sem.Signal), exit from
the suspensive call (Sem.Wait(Exit)) and potentially become the new running task.

Primitive Sched Select involves queue management operations which are prone to pessimistic bounds;
the primitive was, therefore, redesigned so as to preserve minimal execution time and also achieve low
worst-case bounds. The design restriction of having at most one software sporadic task wait on any given
synchronisation server’s semaphore queue allows all of the relevant primitive operations to be easily bounded.
All other primitives in the above list naturally feature completely deterministic execution time bounds. The
characterisation of all such bounds on execution on the selected platform is stored in the so-called run-time
system characterisation file (RCF).

2.3 Toolset Concept

The ERC32 programming model as above presented is supported by an integrated set of static analysis
tools. The block-level description of the tool-set concept is shown in figure 1.

Ada programs which comply with the ERC32 programming model requirements are compiled by the
ERC32 Ada compilation system (ACS). Worst-case execution profiles are automatically generated, for all
tasks in the program, by a specially-designed enhancement to the the ACS, the ESF generator, whose im-
plementation was eased by by the distinguishing features of the ERC32 programming model (eg: no Ada
constructs allowed which have no time-boundable operation, such as heap management and dynamic task
creation) and execution platform (eg: no cache and no MMU allowed).

In the generation of such profiles (collectively termed the program’s Execution Skeleton, ESF), the ESF

Date: Revision(August 20, 1996) Ref: WSD/TV/xxx Page: 8 of 18

Tool Support for the Construction of Statically Analysable HRT Ada Systems Technical Note

ERC32 Cross ACS

ESF Generator

User Configuration File

Target Description File

Execution SkeletonRTS Characteristics File

Priority Assigner

UCF

HRT-HOOD

Ada Program

Scheduler Simulator

Event Trace File Scheduling Analysis Report

Cross Debugger

Schedulability Analyser

RTS Char File

B.1

B.2

B.3 (a)

B.3 (b)

Scheduling Analysis Report

B.4

Figure 1: Toolset Concept Logical Model

generator uses information from the following sources: (i) compiler’s internal data structures for path anal-
ysis and worst-case selection; (ii) configurable look-up tables describing the execution cost of the ERC32
instruction set (including guidance to resolve data-dependent computation time estimates) under the cho-
sen board configuration; (iii) a user-provided description of the static hard real-time attributes of all cyclic,
interrupt sporadic and software sporadic tasks in the system, User Configuration File (UCF); the relevant
attributes include type (ie: cyclic, interrupt sporadic, software sporadic), criticality (ie: interrupt, hard, soft,
non-critical), period (or minimum interarrival time) and deadline. Issues with the generation of the ESF
are discussed in section 3.3.

Priority assignment is performed on static analysis of the UCF and ESF. Tasks are not allowed to share
the same priority level. Tasks with decreasing criticality are assigned decreasing priority levels, whereas
tasks within the same criticality range are assigned priority levels in deadline-monotonic fashion.

Server tasks do not possess user-assigned static attributes as they just inherit a ceiling priority from
their callers and, therefore, need not appear in the UCF. Server tasks’ ceiling priority is set at least one
level higher than the maximum priority of callers.

The program’s ESF, together with the UCF and the RCF, is processed by the Scheduling Analyser tool
to determine the tasks’ worst-case response time. Elements of the undertaken analysis are discussed in
section 3.1.

The use relationship between caller tasks and associated servers is captured by the compiler in the gen-
eration of the Execution Skeleton. Furthermore, all types of caller-server use relationships in the system as
well as the complete set of user-assigned hard real-time attributes can also be automatically extracted from
software design tools which support the HRT-HOOD design method [15]. The HRT-HOOD method was,
in fact, defined in the frame of preparatory activities to the ERC32 project and is fully consistent with the
ERC32 programming model. The implementation of a prototype HRT-HOOD design support tool capable

Date: Revision(August 20, 1996) Ref: WSD/TV/xxx Page: 9 of 18

Tool Support for the Construction of Statically Analysable HRT Ada Systems Technical Note

of automated generation of UCF and equally automated extraction of tasking structures conforming with
the designated profiles has recently been completed (cf [20]) and is presently undergoing evaluation.

The program’s Execution Skeleton may also be processed by the Scheduler Simulator tool. This tool
performs event-driven simulation of the run-time scheduling behaviour of the system and returns selective
trace of the scheduling events occurred over a given time duration. The event trace produced in this manner
may then be compared, for test and verification purposes, with the trace optionally generated during real
runs of the system.

Profile 2.3.1 shows the UCF and ESF syntax required to describe, for exampe, a cyclic task conforming
with template 2.1.1.

Profile 2.3.1 Model of CYCLIC for Static Analysis

----------- UCF

THREAD Template.Cyclic
CRITICALITY hard | soft | not_critical
PERIOD <time>
DEADLINE <time>
OFFSET <time>

END Template.Cyclic

----------- ESF

THREAD Template.Cyclic
TYPE CYCLIC
PRIORITY <integer>
-- processing profile
-- periodic actions
{ [WCET <time> | CALL_PO <PO name> <entry name>] }

-- end processing profile
[comprehensive list of called POs (entry level)]

END Template.Cyclic

3 Enabling Static Analysis

3.1 Foundations of Response Time Analysis

The static analysis model chosen for the ERC32 system concept aims at the prediction of worst-case re-
sponse times (cf eg: [1, 7]). The model stipulates that one thread’s worst-case response time be defined as
the longest elapsed time it takes for that thread to complete its most demanding set of activities in response
to an activation occurring under maximum contention from the rest of the system. (The term thread is used
in the following as a synonym for task.) The worst-case response time of any thread �i does, thus, result
from suitable combination of the following three distinct components:

(i) The worst-case computation time of thread �i,WCCTi, which is defined as the sum of the time cost
of all �i’s sequential blocks of execution which lay in the statically determined worst-case path enclosed
within the thread’s main loop (the thread’s execution profile), in addition to the time cost of the run-time
system services required for the support of that execution.

Date: Revision(August 20, 1996) Ref: WSD/TV/xxx Page: 10 of 18

Tool Support for the Construction of Statically Analysable HRT Ada Systems Technical Note

(ii) The interference incurred by �i, Ii, which is caused by the occurrence of preemptive execution of
higher-priority threads and higher-priority run-time system services incurred during �i’s ready period; in
the ERC32 model, the interference from the run-time system is limited to the handling of the interrupts off
the Interval Timer, as all other interrupts are tied to the run of interrupt sporadic tasks.

(iii) The blocking experienced by �i, Bi, which originates from the possibility that a due release of
�i be delayed by other effects than those arising from preemptive interference; such effects occur when
the run-time system protects the execution of internal critical sections by temporarily inhibiting (ie: defer-
ring) preemption as well as a consequence of adopting IPCI for the implementation of mutual exclusion in
the communications between tasks and servers; use of IPCI may, in fact, delay the release of tasks whose
priority is higher than the caller but lower than the server’s ceiling; response time analysis prescribes that
worst-case blocking be determined as the largest possible delay effect incurred from any of the two sources.

For any thread �i, component WCCTi is fully determined at compile time on the Ada closure of the
program, componentBi is a function of the assigned priorities and the system’s run-time performance, and
component Ii is a function of the system load.

Component WCCTi and Bi are maximised by analysis. Care must be taken, though, to avoid incur-
ring excessive pessimism in their determination, as this may hinder the usefulness of the analysis. Section
3.2 presents the approach taken to the determination of Bi, whilst section 3.3 discusses issues in the gen-
eration of the worst-case execution profiles from which WCCTi is determined.

Component Ii is maximised by assuming all runs to occur under the notional concept of critical instant:

� all cyclic tasks are assumed to be disjointly released at time t0 = 0

� all interrupt sporadic tasks are assumed to be disjointly triggered at time t0 = 0 and arrive at their
maximum frequency

� all software sporadic tasks are assumed to be released off their synchronisation server’s queue at time
t0 = 0.

The formulae which capture the interference effects on �i’s ready period over the interval [0; t) are
shown in the following, where notation j�HP (i) denotes that thread �j ;s priority is greater than �i’s (ie:
Pr(�j) � Pr(�i)), notation j�LP (i) denotes the converse (ie: Pr(�j) < Pr(�i)), and Tj denotes �j’s
period (for cyclic threads) or minimum interarrival time (for sporadic threads):

Interference Effect due to Preemptive Execution of Higher-Priority Threads over [0,t) :

I
t
i =
X

j�HP (i)

d
t

Tj

eWCCTj (1)

Interference Effect due to Interrupts Off the Interval Timer over [0,t) :

Iclk(i; t) = K(i; t) � (T imer Interrupt+Ready After Delay + Sched Select) (2)

In ATAC mode (equation 3), the ATAC filters out all Timer interrupts and only releases those which
induce preemption:

K
t
i =

X

j�HPCYCLIC(i)

d
t

Tj

e (3)

In non-ATAC mode (equation 4), there occurs no filtering and the calculation needs to consider also
the first, non-preemptive, critical-instant release of lower-priority cyclic threads:

K
t
i =

X

j�HPCYCLIC (i)

d
t

Tj

e+
X

k�LPCYCLIC (i)

1 (4)

Date: Revision(August 20, 1996) Ref: WSD/TV/xxx Page: 11 of 18

Tool Support for the Construction of Statically Analysable HRT Ada Systems Technical Note

The ERC32 tool-set supports two variants of analysis techniques. The first variant, based on deadline
monotonic theory [7, 10] (DMS), assumes that tasks’ deadlines cannot exceed the respective period (or min-
imum interarrival time) and determines, for every individual thread, the response time for a single critical-
instant release. The other variant, based on the extended version of deadline monotonic theory presented
in [17] (ADS), assumes that deadlines may be arbitrarily greater than the relevant period (or minimum in-
terarrival time) and, therefore, extends the solution space to multiple, overlapping releases of a task. The
critical-instant assumptions are, thus, worsened by tasks’ releases being delayed past their due time also by
the outstanding completion of their previous releases.

The equations for DMS and ADS response time analysis are shown in the following. Both are based
on recurrence relations in which thread �i’s response time, Rn

i , is expressed as a monothonically increas-
ing summation term. The DMS recurrence is somewhat simpler than its ADS variant and guaranteed to
converge when the system’s utilisation is not greater than 1. The ADS variant, albeit based on the same
conceptual model as DMS, is slightly more complex as its solution space extends across multiple, overlap-
ping releaes; as shown by equation 12, the search stops as soon as the response time for the last release no
longer overlaps the next due activation.

Response Time (DMS) :

Rn
i = Bi +WCCTi + I

Rn�1

i

i + Iclk(i;R
n�1
i) (n > 1) (5)

R1
i = Bi +WCCTi (6)

Response Time (ADS) :
Busy Window at (q+1)th release:

Rn+1
i (q) = Bi + (q + 1)WCCTi + I

Rn
i
(q)

i + Iclk(i;R
n
i (q)) (q; n � 0) (7)

where:

R0
i (q) = Ri(q � 1) (q � 1) (8)

and

R0
i (0) = Bi +WCCTi (9)

Response Time at (q+1)th release:

Ri(q) = Rn
i (q)� qTi (10)

Worst-Case Response Time:

Ri = maxq�NRi(q) (11)

where:

N = setof(q) : Rn
i (q) > (q + 1)Ti =) Ri(q) > Ti (12)

3.2 Blocking Overhead Determination

The worst-case blocking effect incurred on one thread’s release is determined as the largest value between
the single longest period of run-time deferred preemption and the longest-duration entry call to a higher-
ceiling server performed by a lower-priority task.

The former value is a constant characteristic of the run-time system implementation. In the case of the
ERC32 ACS, this value is minimised by the restrictions imposed on the ERC32 programming model.

Date: Revision(August 20, 1996) Ref: WSD/TV/xxx Page: 12 of 18

Tool Support for the Construction of Statically Analysable HRT Ada Systems Technical Note

The latter value is a variable thread-specific attribute which depends upon such application-wide char-
acteristics as the assigned priorities and the performance of servers’ entries. The pessimism potentially
embodied in the determination of this value is minimised by the analysis which follows.

In the ERC32 programming model, calls to server tasks’ entries must conform to any of the types shown
in table 2.

Table 2: Types of PO Calls

server type entry type call denotation

resource server (RPO) unguarded service call RPO.Service
synchronisation server (SPO) unguarded releasing call SPO.Signal
synchronisation server (SPO) guarded suspensive call SPO.Wait

The contribution to one thread’s blocking overhead resulting from use of IPCI is determined by the
largest execution cost of any of the above entry calls. This includes theWCCT of the selected accept
body and the execution cost of all the run-time system operations needed to service the selected entry call.

Calls to resource servers are unconditional, hence incur a constant run-time system overhead. Calls to
synchronisation servers are guarded, hence exhibit worst and best execution profiles: a guarded suspensive
call may find the guard open (best case) and incur no suspension, or closed (worst case) and incur suspension
and deschedule; an unguarded releasing call (SPO.Signal) may find no awaiting task in the entry queue (best
case) and let the caller continue, or one awaiting task (worst case) and cause its release off the queue and,
possibly, the deschedule of the caller. Table 3 lists the individual overhead components which are incurred
while executing the PO calls shown in table 2 under both worst and best cases.

Table 3: PO Call Overhead
call type execution components ID case type

RPO.Service PO Entry + WCCT(Service) + PO Exit (1) worst,best

SPO.Signal
PO Entry + WCCT(Signal) +

(2) worst
+ Entry Queue Mgmt + Context Switch

SPO.Wait (enqueue)
PO Entry + (guard eval) + Sem.Wait (Enter) +

(3.1) worst
+ Sched Select + Context Switch

SPO.Wait (dequeue)
Sem.Wait (Exit) + (guard eval) +

(3.2) worst
+ WCCT(Wait) + PO Exit

SPO.Signal (no wait) PO Entry + WCCT(Signal) + PO Exit (4) best

SPO.Wait (open)
PO Entry + (guard eval) + WCCT(Wait) +

(5) best+ PO Exit

It should be noticed that the two worst-case components of an SPO.Wait call occur at two separate
points in time: component (3.1) occurs from the caller’s entering of the SPO to caller’s suspension and
placement in the entry queue; component (3.2) occurs from caller’s release from the entry queue to caller’s
departure from SPO and always directly follows execution of component (2).

Response time analysis based on DMS considers one single critical-instant release of the thread sub-
ject of analysis and also requires that all guards encountered in that run be initially closed. DMS analysis
is, thus, interested in worst-case service values only. Analysis based on ADS contemplates multiple, po-
tentially overlapping releases and may, therefore, need to consider best-case values, too. For example, a
software sporadic thread �i performing a guarded suspensive call at its q-th release (with q > 0) will find
the guard open if �i’s priority is lower than the releasing thread’s. Similarly, thread �i performing an un-

Date: Revision(August 20, 1996) Ref: WSD/TV/xxx Page: 13 of 18

Tool Support for the Construction of Statically Analysable HRT Ada Systems Technical Note

guarded releasing call will find no awaiting thread in the entry queue if �i’s priority is higher than that of
the software sporadic thread associated with that synchronisation server.

Column 5 of Table 4 prescribes how the individual overhead components listed in Table 3 contribute to
the bound for the IPCI blocking on thread �i: tag L under column 2-4 denotes that 9k : k�S(j) : j�LP (i)^

calls(j; PO:Call) ^ PO�HP (i) ^WCCTk(Call) = max(WCCTj�S(Call)) computed over all the
entry calls of every individual server in the application; tag H denotes that the thread set S(j) is empty
for that particular type of server call. The definitive bound on the IPCI blocking is then calculated as the
maximum value amongst those captured by Table 4.

Table 4: Call Overheads Accountable for Blocking

call type blocking factor
RPO.Service SPO.Signal SPO.Wait Worst Case Best Case

Pr(Caller) vs
Pr(�i)

H H H none none
L H H (1) (1)
L L H max(1,2) max(1,4)
L L L max(1,(2+3.2),(3.1)) max(1,4,5)
H L L max((2+3.2),(3.1)) max(4,5)
H H L (3.1)+(3.2) (5)
H L H (2) (4)
L H L max(1,((3.1)+(3.2)) max(1,5)

3.3 Worst-Case Execution Profile Generation

The generation of the ESF from the application’s source code must attempt to capture both the local worst-
case at thread-level and the global worst-case at application-level in a manner which incurs a controlled
degree of induced pessimism.

Excessive pessimism may arise, for example, when the resolution of a branch or the bounding of an
iteration within one thread’s profile fail to capture application-wide path exclusion conditions (eg: mutually
exclusive operating modes) or run-time best-bounding information. This may cause otherwise provably
impossible paths to be selected and consequently yield too conservative predictions.

The ESF generator attempts to mitigate such problems by providing means for the user to annotate the
source code with a loop-bound and a path-exclusion pragma: (i) pragma Loop Count (< constant >)
placed before a for or while loop construct allows the user to supply the preferred bound to an otherwise
unbound iteration; the compiler uses the provided bound value to cost the iteration but returns warnings if
it was able to statically determine a better bound; (ii) pragma Exclude Wcet placed inside a conditional
branch, procedure body or task body causes the exclusion of the tagged construct from the selected path.

The primary goal of the ESF generator is to determine, for every thread �i in the system, the execution
profile which maximises theWCCTi component amongst the alternate control flow paths allowed by the
User’s placement of the above pragmas.

Thread �i’sWCCTi is made up of two components: (i) �i’s own execution cost as determined at com-
pile time by the ESF generator and (ii) the run-time system overhead incurred by �i in the execution of one
release in the selected path. The latter component depends on the thread’s type and the server calls retained
in the profile. The relevant overheads are listed in table 6.

The achievement of justified maximisation of WCCTi, however, is not the sole objective of the ESF
generator. There, in fact, exist two distinct ways for thread �i to effect system’s responsiveness:

Date: Revision(August 20, 1996) Ref: WSD/TV/xxx Page: 14 of 18

Tool Support for the Construction of Statically Analysable HRT Ada Systems Technical Note

� a longer WCCTi induces a longer Ij on thread �j8j : j�LP (i);

� a PO.Call performed by �i may contribute to Bk for thread �k 8k : k�HP (i) ^ k�LP (PO).

The ESF generation algorithm must, therefore, also seek to achieve justified maximisation ofBk.
Consider the code fragment in example 3.3.1 and assume that < condition > cannot be statically

resolved. The example shows a classical case in which local maximisation of WCCTi may degrade the
determination of Bk for any thread �k in the system. This case occurs on the selection of branch B, when
no trace of PO.Call is retained in the thread’s profile.

The problem is resolved, in the ERC32 system, by instructing the branch selection algorithm to keep
record of all the server calls performed outside the retained profile and to require that alternate blocking
analysis be performed of the potential blocking effect of such calls. This analysis may possibly yield a larger
Bj value for some thread �j , thereby highlighting a potential conflict between local and global worst-case
path selection criteria. In any such case, the server call responsible for thread �j’s alternate blocking is
identified to the User and the User is advised to consider repeating the analysis forcing the extraction of
execution profiles which include that server call.

if <condition> then
-- branch A
<A1> -- sequential block
PO.Call
<A2> -- sequential block

else
-- branch B
 -- sequential block

end if;

Example 3.3.1: Effect of Blocking on Path Selection

Sequential blocks of execution are delimited by explicit server calls, as their processing require execu-
tion of run-time system code, and start of bounded iterations, as these cannot be unfolded for the sake of
unifying the input ESF for both Scheduler Simulator and Scheduling Analyser.

All the < time > values specified in WCET-type profile statements are determined by the ESF ex-
tractor by summation of the execution cost of the assembly instructions enclosed within the boundaries
of the relevant source block and exclusively belonging to the thread’s own code. The execution cost of
the individual assembly instructions is specified in the Target Characteristics File for the chosen ERC32
board configuration (cf figure 1). One thread’sWCCT is, thus, computed by summation of all the WCET
< time > components included in the thread’s profile plus the cost of all the run-time system services
required for management and administration support of the thread’s operation.

3.4 Preliminary Characterisation of Run-Time System Overheads

Preliminary characterisation of the worst-case run-time system overheads was performed upon comple-
tion of the the ERC32 ACS implementation. Whereas the ultimate objective in this respect is to perform
the characterisation using the timing capabilities embodied by the ESF extractor, the initial measurements
were taken out of real runs on an ERC32 preliminary demonstration board, artificially enforcing worst-case
execution paths wherever necessary.

Date: Revision(August 20, 1996) Ref: WSD/TV/xxx Page: 15 of 18

Tool Support for the Construction of Statically Analysable HRT Ada Systems Technical Note

The performed measurements also included determination of the longest deferred-preemption time in-
curred during run-time system operation, as required for analysis of blocking overheads.

The measurements were performed on ERC32 configurations with and without the ATAC, but the re-
sults are not directly comparable with one another as the former reflect a presently complete and highly
optimised implementation while the latter are only qualitative and still awaiting completion of testing and
optimisation. The results from this preliminary characterisation are shown in table 5

Table 5: Timing Characteristics of Basic Run-Time System Operations (�s)

RTS Operation
DEM32 (10 MHz 0 Wait-states)

non-ATAC run-time ATAC run-time

PO Entry 8.0 14.0
PO Exit 11.0 11.0
Int Sporadic Wait (Enter) 3.0 3.0
Int Sporadic Wait (Exit) 3.0 0.0
Sem.Wait (Enter) 7.0 7.0
Sem.Wait (Exit) 3.0 3.0
Sched Select 5.0 0.0
Context Switch 34.0 41.0
Delay Until (Insert at Top) 39.0 23.0
Delay Until (Insert Lower) 22:0 +C � 3:0 23.0
Delay Until (Exit) 8.0 8.0
Entry Queue Mgmt 6.0 8.0
Ready After Delay 12.0 0.0
Timer Interrupt 21.0 0.0
Interrupt Handling Overhead 67.0 0.0
Max Deferred Preemption 130.0 65.0

In accordance with the earlier discussion in this paper, the only parametric expression in table 5 is the
one which describes the cost of placing a cyclic thread in the delay queue at a position lower than the
top. The actual position depends on the relative ordering of the required awake time by the Interval Timer.
Term C, thus, denotes the total number of cyclic threads currently placed ahead of the presently suspending
thread. The best value for C, for use by static analysis, obviously depends on the knowledge available to
the tool in question. In the case of the ERC32 tool-set, this value shall be the exact number of presently
ahead-enqueued threads, for the Scheduler Simulator, and the total number of cyclic threads in the system,
for the Schedulability Analyser.

The information contained in table 5, in conjunction with the analysis of the ERC32 ACS implemen-
tation discussed earlier in this paper, allows the run-time system contribution to one thread’s WCCT to
be completely characterised. The complete list of provided by Table 6 provides the complete list of the
task management and administration service overheads incurred by tasks under the conditions assumed for
DMS and ADS analysis. General task’s execution overheads may obviously include those resulting from
the server call services listed in table 3. The individual services in both table are fully described by seman-
tically and operationally correct composition of their elementary constituents.

Date: Revision(August 20, 1996) Ref: WSD/TV/xxx Page: 16 of 18

Tool Support for the Construction of Statically Analysable HRT Ada Systems Technical Note

Table 6: Tasking Overhead Bounds

task / event
analysis case

DMS & ADS (q = 0) ADS (q > 0)
Cyclic
on release Context Switch + Delay Until(Exit) 0

on suspension
Delay Until(Enter) + Sched Select +

0+ Context Switch
Int Sporadic
on release Interrupt Handling + Sched Select + Context Switch + Interrupt Sporadic Wait(Exit)
on suspension Interrupt Sporadic Wait(Enter) + Sched Select + Context Switch
Sw Sporadic

on release SPO.Wait(dequeue)
0 if Releasing �HP (SS);
SPO.Wait(dequeue) otherwise

on suspension SPO.Wait(enqueue)
SPO.Wait(open)

if Releasing �HP (SS);
SPO.Wait(enqueue) otherwise

Any Task Type
RPO.Service PO Entry +WCCT(Service) + PO Exit

SPO.Signal
SPO.Signal(no wait) if Caller �HP (SS);
SPO.Signal otherwise

Interval Timer
on cyclic release K

t

i
* (Timer Interrupt + Ready After Delay + Sched Select)

4 Conclusions and Outlook

This paper has presented the design and implementation of an Ada programming model intended for use
on board of new-generation software-intensive satellite control systems. The programming model is based
on an educated and optimised use of Ada tasking and preemptive priority-based scheduling. Preliminary
analyses have shown that fixed-priority process-based preemptive scheduling suits the emerging applica-
tion needs better than the conventional forms of rigid and inflexible cyclic scheduling. Acceptance of the
novel approach, however, critically depends upon the provision of creditable means to statically ascertain
the run-time performance of the system and its ability to meet the designated deadlines.

The choice made as part of the ERC32 model’s design was to provide comprehensive support for worst-
case response time analysis. This form of analysis, however, may easily incur excessive pessimism and
consequently yield too conservative, low-efficiency predictions. This paper has described the approach
taken to maximise accuracy of prediction and control of pessimism in the implementation of the ERC32
analysis model.

Acknowledgements

The work described in this paper is the result of the collective effort of all the members of the ERC32 project
software team. The author is particularly indebted to Claire Bawin, Brian Dobbing, John Reynolds and
Andy Walter for their great dedication and highly constructive contribution to the project.

Date: Revision(August 20, 1996) Ref: WSD/TV/xxx Page: 17 of 18

Tool Support for the Construction of Statically Analysable HRT Ada Systems Technical Note

References

[1] M. Joseph, P. Pandia. ”Finding Response Times in a Real-Time System”. The Computer Journal (BCS),
29(5), pp 390-395. 1986.

[2] International Standard ISO/IEC 8652:1987. Ada Reference Manual. September 1987.

[3] J.B. Goodenough, L. Sha. ”The Priority Ceiling Protocol: A Method for Minimising the Blocking of
High-Priority Tasks”. Ada Letters, 8(7), pp 35-38. 1988.

[4] J.P. Lehoczky, L. Sha, Y. Ding. ”The Rate Monotonic Scheduling Algorithm: Exact Characterization
and Average Case Behavior”. Proc. 10th Real-Time Systems Symposium, pp 166-171. IEEE. December
1989.

[5] L. Sha, R. Rajkumar, J.P. Lehoczky. ”Priority Inheritance Protocols: An Approach to Real-Time Syn-
chronization”. Transactions on Computers, 39(9), pp 1175-1185. IEEE. September 1990.

[6] J.A. Stankovic, K. Ramamritham. ”What is Predictability for Real-Time Systems?”. Real-Time Sys-
tems, (2), pp 247-254. 1990.

[7] N.C. Audsley, A. Burns, M.F. Richardson, A. Wellings. ”Hard Real-Time Scheduling: The Deadline
Monotonic Approach”. Proc. 8th Real-Time Operating Systems and Software, pp 127-132. IEEE. 1991.

[8] C.D. Locke. ”Software Architectures for Hard Real-Time Applications”. Real-Time Systems, (4), pp
37-53. 1992.

[9] J. Roos, F. Gomez-Molinero. ”A Complete Version of the Ada Tasking Coprocessor”. Proc. Real-Time
Embedded Processing for Space Applications. CNES. November 1992.

[10] N.C. Audsley, A. Burns, A. Wellings. ”Deadline Monotonic Scheduling Theory and Application”.
Control Engineering Practice, 1(1), pp 71-78. 1993.

[11] British Aerospace Plc. ”Hard Real-Time Operating System Kernel”. Final Report TP1079 of ESTEC
Study Contract No. 9198/90/NL/SF. February 1993.

[12] Vega Space Systems Engineering Ltd. ”Study of the Operations Aspects of On-Board Software”. Fi-
nal Report on ESTEC Purchase Order No. 123509. June 1993.

[13] C. Bailey, E. Fyfe, T. Vardanega, A. Wellings. ”The Use of Pre-Emptive Priority Based Scheduling for
Space Applications”. Proc. 14th Real-Time Systems Symposium, pp. 253-257. IEEE. December 1993.

[14] T. Vardanega. ”Experience with the Development of Hard Real-Time Embedded Ada Software”. Proc.
16th Int. Conf. on Software Engineering, pp. 301-308. IEEE. May 1994.

[15] A. Burns, A. Wellings. ”HRT-HOOD: A Structured Design Method for Hard Real-Time Systems”.
Real-Time Systems, (6), pp 73-114. 1994.

[16] J. Gaisler. ”Concurrent Error-detection and Modular Fault Tolerance in a 32-bit Processing Core for
Embedded Space Flight Applications”. Proc. FTCS-24, pp. 128-130. IEEE. June 1994.

[17] K.W. Tindell, A. Burns, A. Wellings. ”An Extendible Approach for Analysing Fixed Priority Hard
Real- Time Tasks”. Real-Time Systems, (6), pp 133-152. 1994.

[18] International Standard ISO/IEC 8652:1995. Ada Reference Manual. February 1995.

[19] T. Vardanega. ”On the Use of Ada Tasking in the Building of Satellite Control Software”. Proc. 3rd
Workshop on Parallel and Distributed Real-Time Systems, pp. 44-51. IEEE. April 1995,

[20] Intecs Sistemi SpA. ”HRT-HoodNICE: A Hard Real-Time Software Design Support Tool”. Final Re-
port on ESTEC Contract No. 11234/94/NL/FM(SC). March 1996.

Date: Revision(August 20, 1996) Ref: WSD/TV/xxx Page: 18 of 18

