

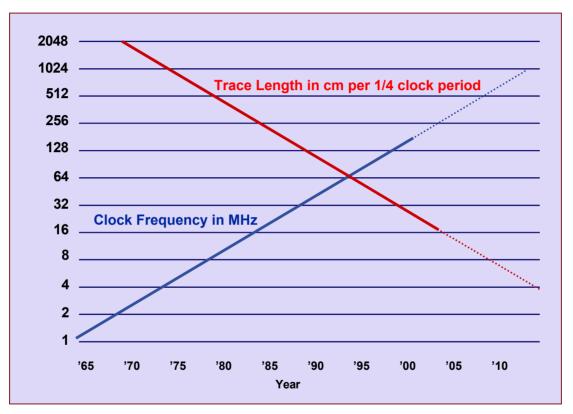
Virtex[™]-4 Source Synchronous Interface Advantage

High-Performance Source-Synchronous Interfaces Made Easy

We Asked Our Customers:

What are your challenges?

- Shorter design time, faster obsolescence
- More competition, increasing cost pressure
- Demanding complexity and performance
- Power consumption and thermal issues
- Signal integrity problems caused by faster I/O
- Implementing source-synchronous and memory interfaces
- Today's seminar addresses **Source Synchronous I/Fs**

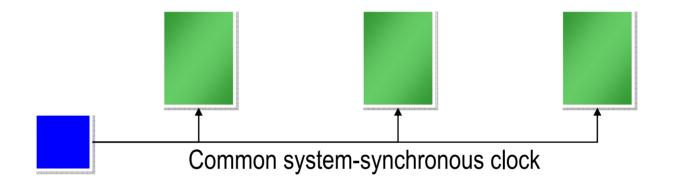

Agenda

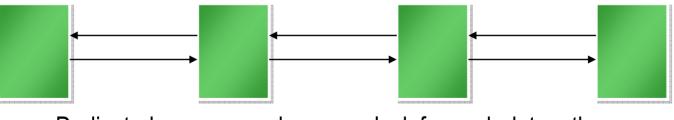
- Background
- Source Synchronous Design Challenges & Solutions
- Building SFI-4.1/ SPI-4.2 applications
- Summary

Agenda

- Background
- Source Synchronous Design Challenges & Solutions
- Building SFI-4.1/ SPI-4.2 applications
- Summary

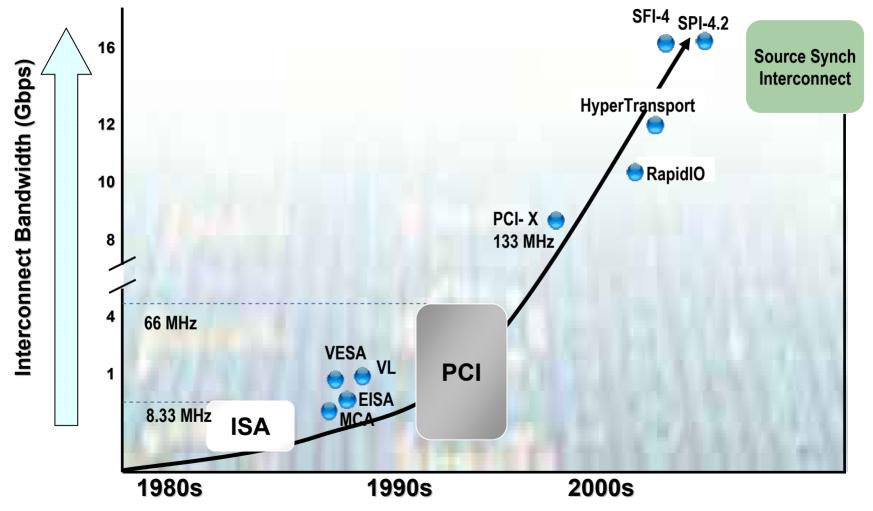
Moore Meets Einstein




• Speed doubles every 5 years...

...but the speed of light never changes

System Synchronous vs. Source Synchronous

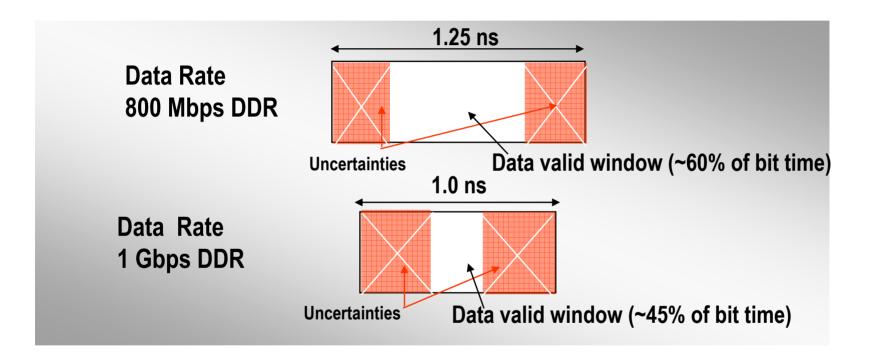


Dedicated source-synchronous clock for each datapath

System Interconnect Trends

Note: Interconnect bandwidth = #of data lines * signaling rate per line

Source-Synchronous Interfaces


Key Characteristics

- Point to point connection instead of buses
- Higher chip-to-chip speed
 - SDR: 700 MHz clock
 - DDR: 500 MHz clock
 - 1Gbps data rate
- Higher reliability
 - Minimizes problems of skew and jitter

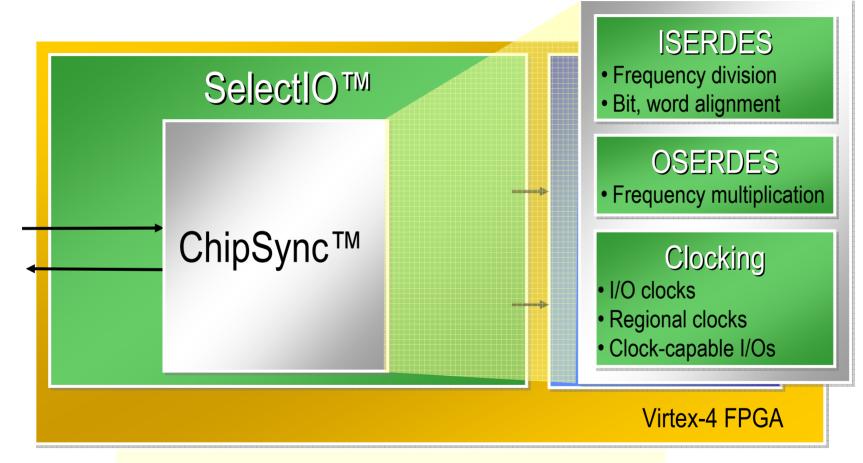
Applications

- Networking/Telecom
 - SPI-4.2 / SFI-4 / XSBI
 - RapidIO[™]
 - NPSI (CSIX)
 - Utopia IV
- Memory
 - DDR SDRAM
 - DDR 2 SDRAM
 - QDR II SRAM
 - RLDRAM II
 - FCRAM II

Increasing Bandwidth Reduces System Timing Margin

Effective Data Valid Window Shrinks Faster than the Bit Period

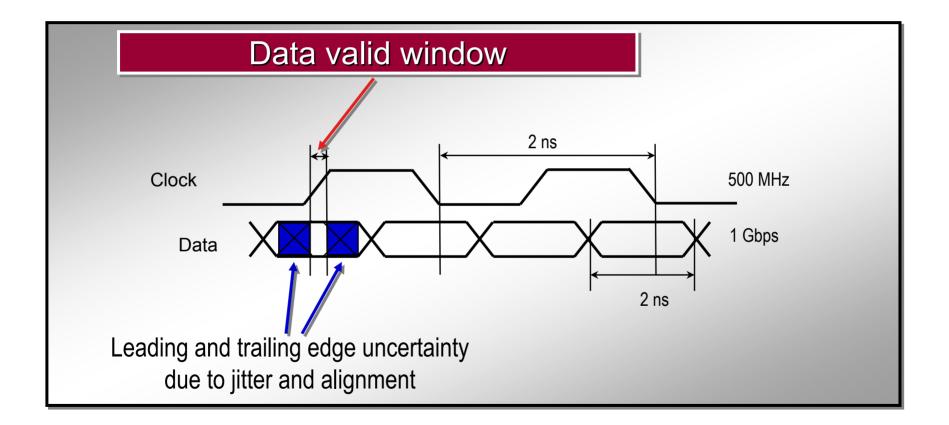
Agenda


- Background
- Source Synchronous Design Challenges & Solutions
- Building SFI-4.1/ SPI-4.2 applications
- Summary

Challenges

- 1. Data capture at high speeds
- 2. Managing clock speeds up to 700 MHz
- 3. PCB layout challenge
 - 1. I/O placement flexibility
 - 2. Channel to channel skew
- 4. Implementing multiple interfaces

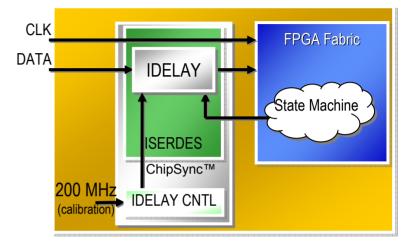
Virtex-4 I/Os Simplify Design With Built-In Critical Circuits

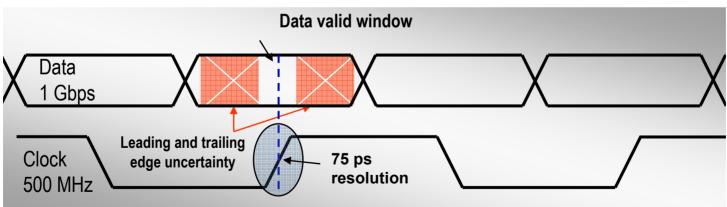


ChipSync Circuitry in Every I/O!

Source Synchronous Interfacing Made Easy, Page 12

#1: Data Capture at High Speeds



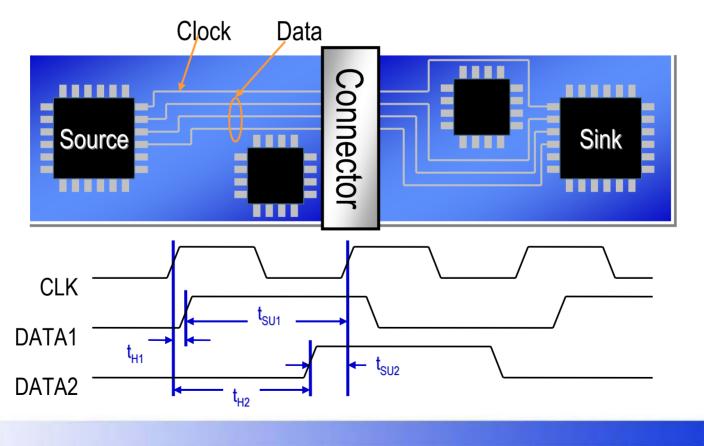

Source Synchronous Interfacing Made Easy, Page 13

Precise Clock to Data Centering

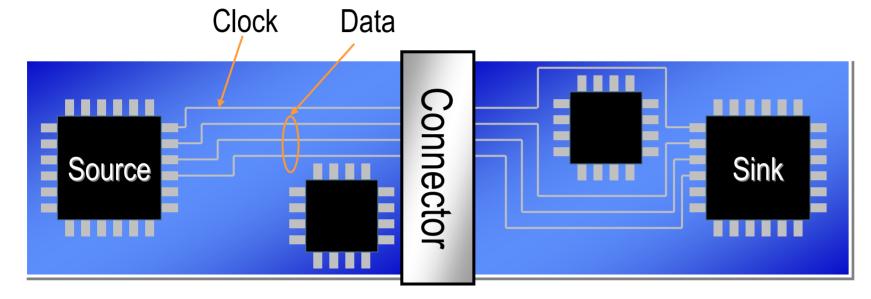
- Virtex-4 FPGA solution with ChipSync™ IDELAY
 - "Run time" centering of data to clock during initialization
 - 64 tap delays with 75 ps resolution
 - Maximizing design margins for higher system reliability

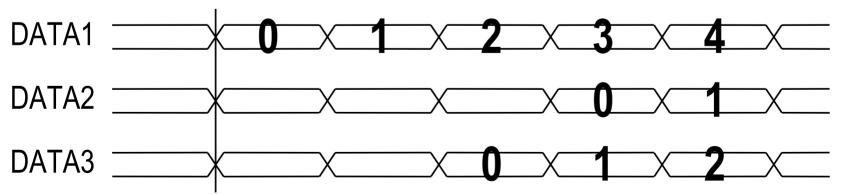
XILINX

Not available in any other FPGA, ASIC or ASSP


#2: Managing Clock Speeds Up to 700 MHz

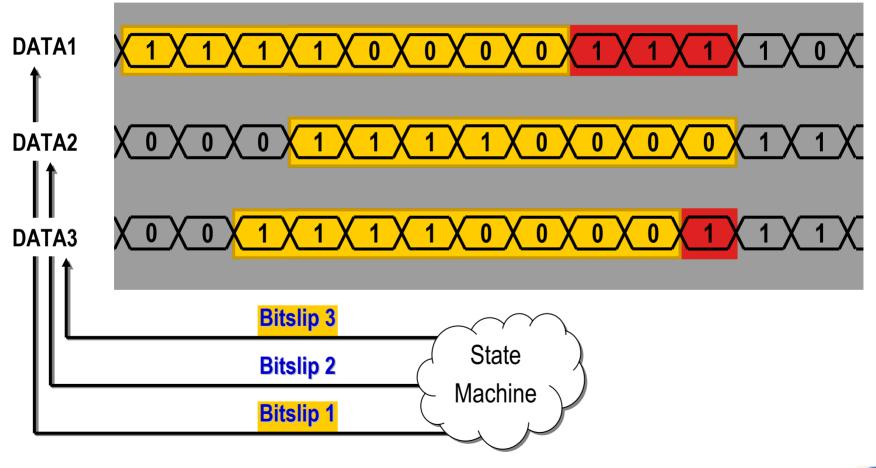
- Clock distribution with minimal skew & duty cycle distortion
 - Up to 32 fully differential Global clock distribution networks
 - 4 fully differential IO clock distribution networks per bank
- Ability to forward clocks
 - FPGA can serve as a precision-aligned clock distributor:
 - One 500MHz clock in, 32 500MHz (LVDS) clocks out with less than 50ps of skew



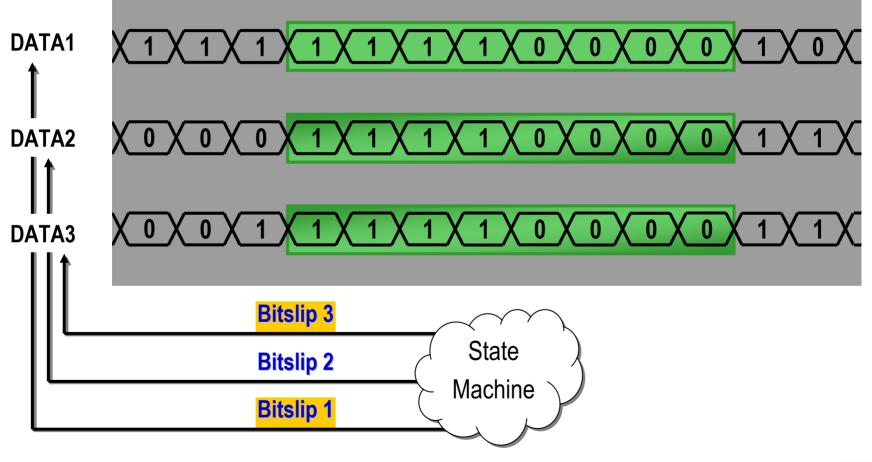

#3: PCB Layout Challenges

- Layout constraints can result in trace length differences
- Propagation delays for connectors may not be available

Too Much Skew Means Words Misaligned After Bits Aligned

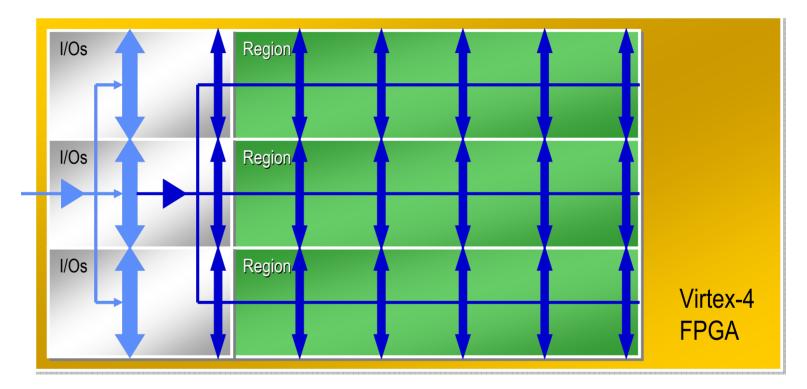


Source Synchronous Interfacing Made Easy, Page 17


Easy Word Alignment with Bitslip

Source Synchronous Interfacing Made Easy, Page 18

Easy Word Alignment with Bitslip

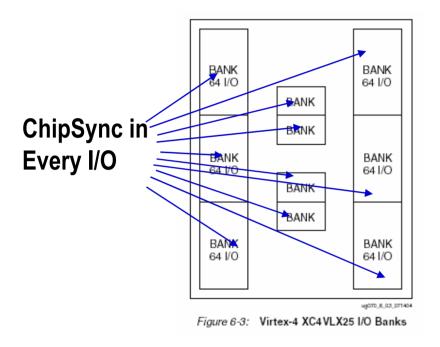


#4: Implementing Multiple Interfaces

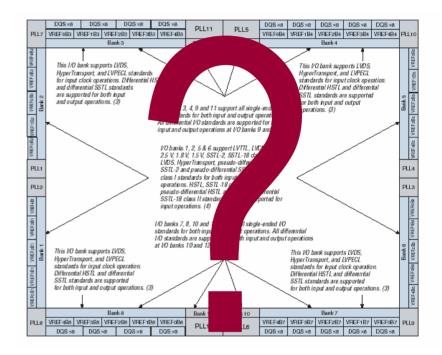
- Multiple Unique clock domains
- Clock management
 - Synthesis, distribution
- IO Placement
 - Breakout
 - Board floorplan

Abundant Clock Resources Support Multiple Clock Domains

- Two Regional Clock nets per region
- 8-24 clock regions per device
- Up to 4 Clock-Capable I/Os per bank


- I/O Clock nets or general interconnect can drive Regional Clock nets
- Regional Buffer can divide I/O Clock rate

2X The Resources for Flexible Clock Management


Feature	Stratix-II	Virtex-4
Clock inputs: Differential	16	32
Clock inputs: Single-ended	16	32
Clock regions	4 quadrants	8 – 24 regions
Clock circuits	4 EPLLs, 8 FPLLs	20 DCMs + 8 PMCDs
Global clocks	16 total, 16 per quadrant	32 total, 8 per region
Regional Clocks	32 total, 8 per quadrant	16 – 48 total, 2 per region
I/O clocks	0	36 – 68, 4 per I/O bank
Total dedicated clocks	48	48 - 80
I/O Banks	8 general banks and up to 4 smaller banks, restricted	8 – 16 full featured

 Enables much easier implementation of multiple interfaces within the same chip

Simpler PCB Design With Flexible I/O & Banking Rules

- All Virtex-4 I/Os can be used for source synchronous design
- 9 17 I/O banks per device

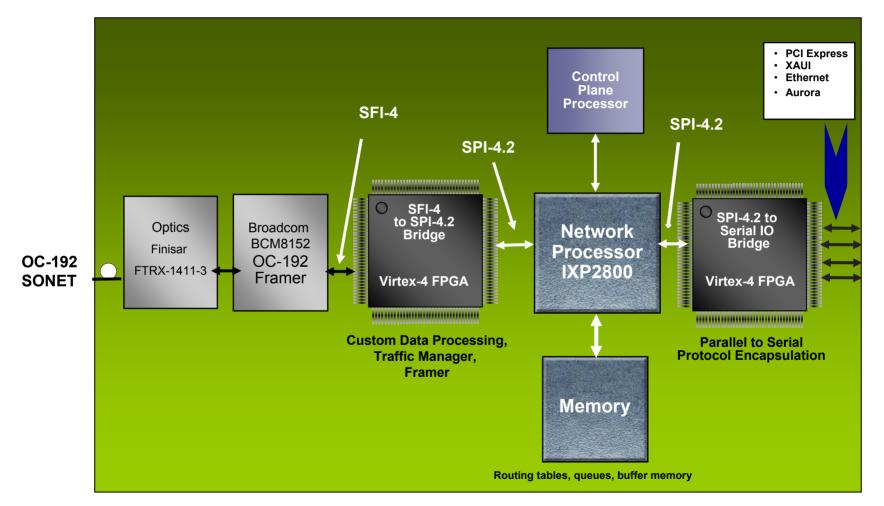
• Stratix-II offers a restrictive choice of banks and standards for source synchronous design

Virtex-4 Source-Synchronous Resource Summary

Resource	Quantity	
ChipSync blocks	One per I/O	
Clock Regions	8-24	
I/O Banks	9-17	
SelectIO pins	240-960	
Clock-Capable I/Os	18-68	
Regional Clocks	16-48 (2 per Clock Region)	
I/Os accessible by I/O Clock	95	
Max Channels aligned	95	

Highest Performance, Precision & Flexibility

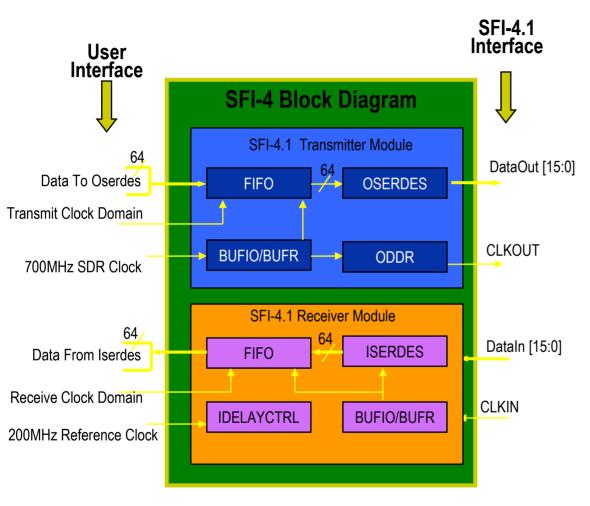
Feature	Stratix-II	Virtex-4
I/O clock & data alignment	45° steps, clock only	75 ps, 64 taps for both data & clock
Parallel I/O SERDES	Left & right banks only	All I/Os
Maximum I/O speed (by speed grade)	622 Mbps/ 844 Mbps/ 1 Gbps (input), 1 Gbps output	800 Mbps/ 900 Mbps/ 1 Gbps for all inputs and outputs


- Finer delay tap resolution independent of process, voltage and temperature
- Allows precision clock and data alignment
- Relaxes PCB design and improves design margin
- Higher performance in slowest parts cuts system cost

Agenda

- Background
- Source Synchronous Design Challenges & Solutions
- Building SFI-4.1/ SPI-4.2 applications
- Summary

Application Example


A 10 Gigabit OC-192 Line Card

Source Synchronous Interfacing Made Easy, Page 27

SFI-4 Design Made Easier With Virtex-4

- New I/O clock resources (BUFIO & BUFR) for receiver clock network
 - Easier to recover the forwarded clock for data sampling
- Dedicated ChipSync[™] circuitry to achieve 700MHz SDR
 - ISERDES/OSERDES- help make serial to parallel data conversion easier
 - IDELAY- precise clock to data alignment to accurately capture data within a small data-valid window
- FIFO16 for clock domain changing

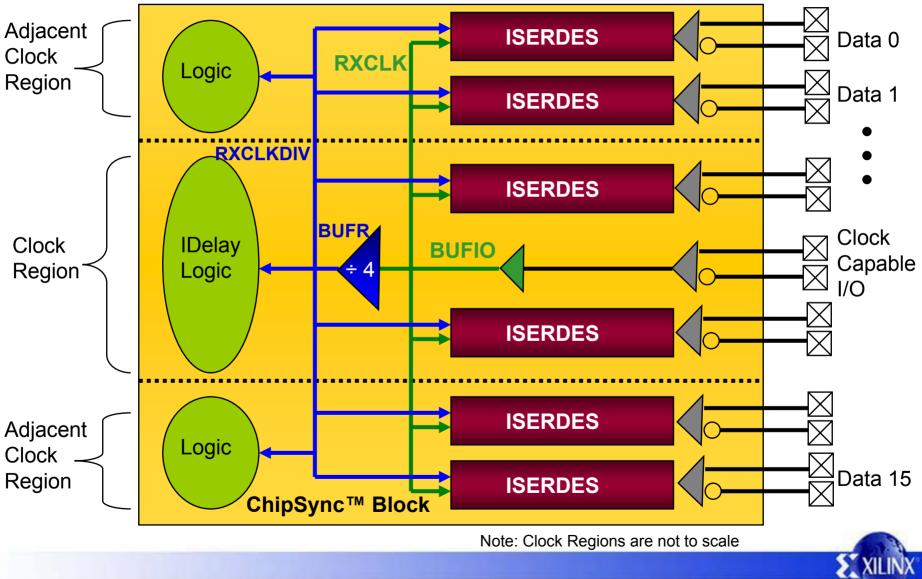
Implementing SFI-4.1 in Virtex-4[™]

Source Synchronous Interfacing Made Easy, Page 29

SFI-4.1 Specification:

- Clock Frequency: 622.08MHz
- Clock Duty Cycle: 45/55
- 20-80% rise, Fall Times: 100-300ps
- Data Valid Window: 600ps

Utilization


- 63 slices / 4 BlockRAMs
- 34 LVDS I/O pairs
- 3 Global Clock Buffers / 2 BUFIO /BUFR Pairs

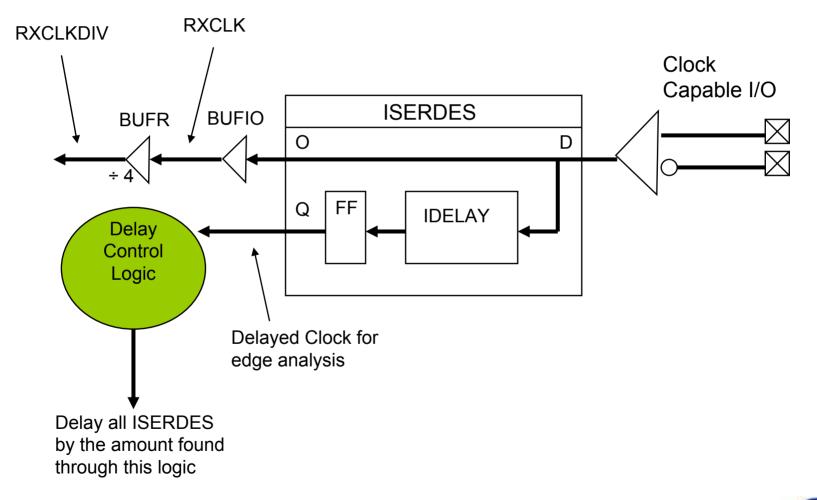
Implementing SFI-4 Receiver in Virtex-4

- Blocks used for receive:
 - Recovered clock and its network
 - BUFIO High Speed Clock distribution (serial-side)
 - BUFR Lower Speed Clock distribution (parallel-side, fabric)
 - Recovered data
 - ISERDES
 - ISERDES_ALIGNMENT_PROCESS
 - Clock-data training algorithm state machine
 - Interface-to-Core Synchronization
 - FIFO16

SFI-4 Receiver Interface

Virtex-4 SFI-4 Design Features

- 700MHz SDR LVDS Transmit/Receive
- 1 clock pair, 16 data channels
- 4 to 1 Serialization / 1 to 4 De-serialization
- Clock-Data Alignment
 - Bus alignment: no training pattern required
- Can also be used for XSBI and other high-speed single-data-rate LVDS applications

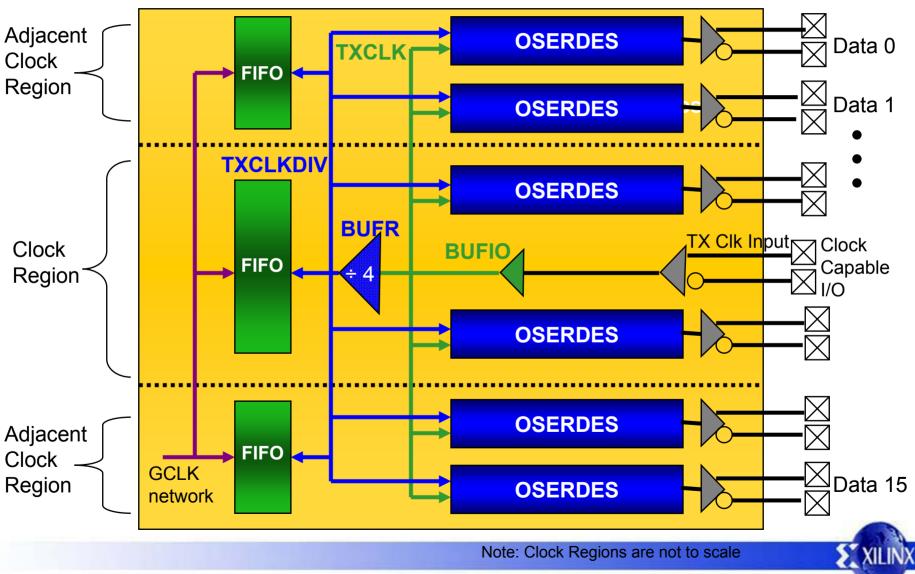


ISERDES_ALIGNMENT_PROCESS

- SFI-4 uses Bus-Alignment
 - Align clock and data using IDELAY on each data lane
 - Data-agnostic, non-destructive training technique:
 - Assumptions:
 - Clock and data are edge-aligned at the pins of the FPGA
 - Clock toggling at startup for several milliseconds before data is sent
 - Train to clock (1,0 pattern)
 - Find center of sampling window for the ISERDES in the clock IOB
 - Move data to optimal location (determined for Clock ISERDES)
- Implementation fully characterized and verified

Bus Alignment: Clock Training Circuit

Bus Alignment Algorithm


- Begin incrementing delay on the clock until a 1 to 0 change is detected at Q output
- Begin counting the number of tap-delays and continue incrementing until another 1 to 0 change is detected at Q1 output. This gives the data valid window width in terms of number tap-delays
- Subtract the final tap-delay value by half the number of taps determined to equal the data valid window width
- Increment all data channels by that amount
- Data to clock alignment is complete

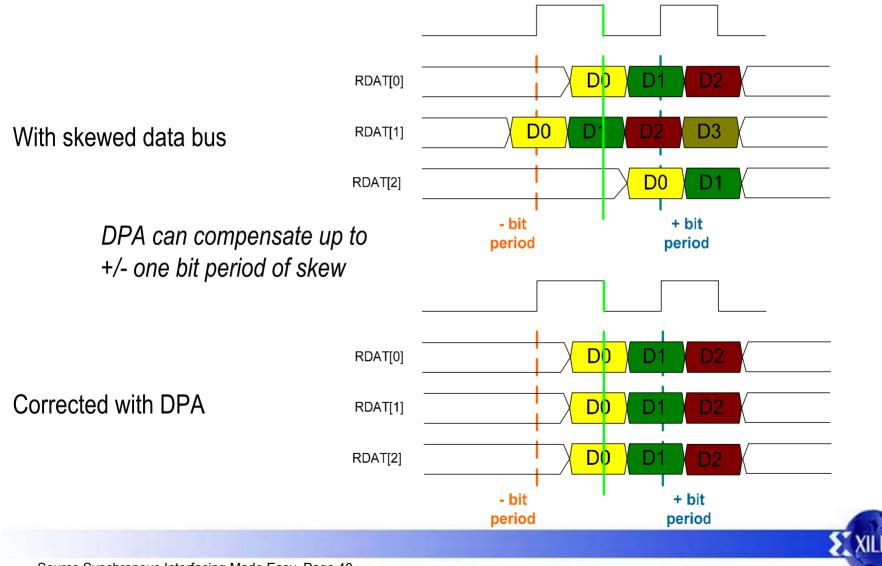
Implementing SFI-4 Transmitter in Virtex-4

- Blocks used for transmit:
 - Transmit clock and its network
 - BUFIO High Speed Clock distribution (serial-side)
 - This clock must come from an external reference (high quality) at full rate and be connected to a "clock-capable I/O"
 - The clock-capable I/O has a dedicated connection to the BUFIO
 - BUFR Lower Speed Clock distribution (parallel-side, fabric)
 - Transmit data
 - OSERDES
 - Interface-to-Core Synchronization
 - FIFO16: Moves data from Core clock domain (Global Clock buffer) to the interface clock domain (BUFR)

SFI-4 Transmitter Interface

Source Synchronous Interfacing Made Easy, Page 37

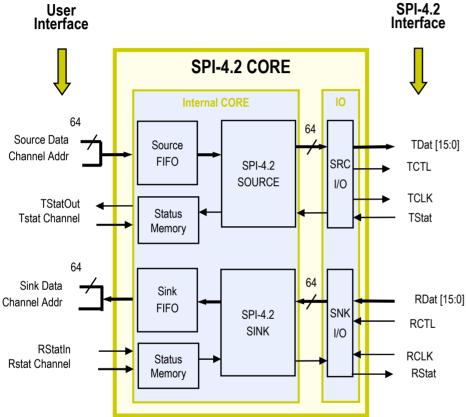
SPI-4.2 in Virtex-4


Source Synchronous Interfacing Made Easy, Page 38

Xilinx SPI-4.2 Core Overview

- Fully compliant with OIF-SPI4-02.1 specification
- Ideal solution for POS, ATM, and Ethernet apps
 - Supports OC-192 line speeds 10-Gbps and beyond
 - Supports static and dynamic alignment
 - Point-to-point interface, symmetrical operation
 - 16-bit data bus using DDR / LVDS pin pairs
 - Common FIFO interface
 - Enables easy bridging
- Supports all Virtex-4 devices

Source Synchronous Clocking



Source Synchronous Interfacing Made Easy, Page 40

Dynamic Phase Alignment (DPA) Advantages

- Independent sample point determination for each bit
 - Bit to Bit skew & Clock distribution skew removed from timing budget, improved system timing margin
 - Supports higher speed interfaces > 700Mbps/pin pair
 - Removes need for rigorous trace length matching on PCB
- Recovered data re-aligned to reform the data bus
 - Removes skew or sampling induced bus misalignment
 - SPI-4.2 training pattern used as a reference pattern
- Virtex-4 DPA function only requires ~360 slices
 - Less than 50% of Virtex-II/Virtex-II Pro DPA solution size

SPI-4.2 Core Implementation

SPI-4.2 Performance:

-10/11/12 622-700 Mbps Static

- -10 622-800 Mbps Dynamic
- -11 622-900 Mbps Dynamic
- -12 622-1+ Gbps Dynamic

Resources:

-10/11/12 2700 Slices / 12 BlockRAMs

- -10 3050 Slices / 12 BlockRAMs
- -11 3650 Slices / 12 BlockRAMs
- -12 3650 Slices / 12 BlockRAMs

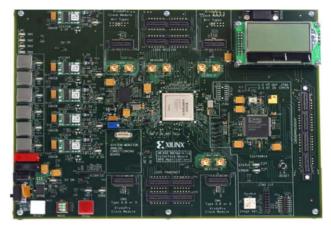
4VLX25 Utilization Example:

25% of slices for Static34% of slices for Dynamic

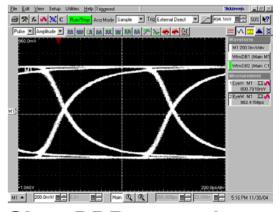
SPI-4.2 DPA Major Components

- ISERDES
 - Delay chain
 - Bitslip module
 - Serial to Parallel Converter (1:4)
- Data recovery (IDELAY chain) state machine
 - Moves center of data eye for each bit separately to align with the clock edge using SPI-4.2 training pattern
- Bus de-skew (Bitslip/word alignment) state machine
 Aligns channels using SPI-4.2 training patterns

SPI-4.2 Design Made Easier With Virtex-4


- 1 Gbps/pin data rates
- Reduce FPGA resources
 35% smaller
- Flexible pin-outs
- Low power
- 4+ cores in a single device
- Accurate data capture

- ⇒ Virtex-4 embedded SERDES
- ➡ Embedded DPA New Sink core, 64-bit UI
- ⇒ Not pin-locked Complete pin-out freedom
- ⇒ Uses dedicated circuitry
- ⇒ Abundant clock resources
- ⇒ 200 MHz IDELAYCTRL clock Calibrated 75 ps taps Independent of PVT variations



Virtex-4 ML450 FPGA Source-Synchronous Interfaces Toolkit

- Supports all major differential I/O standards
 - SPI-4.2, SFI-4/XSBI, RapidIO[™], HyperTransport[™], NPSI (CSIX), Utopia IV
- 1 Gbps Double Data Rate (DDR) and 700 MHz Single Data Rate (SDR) performance
- Includes tools for debugging and fine tuning of SSIO designs
 - Bit error rate tester pinpoints problem channel(s) on LVDS bus
 - Link diagnostics for troubleshooting

ML450 Development Board

1 Gbps DDR transmitter

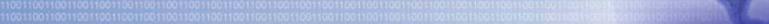
Agenda

- Background
- Source Synchronous Design Challenges & Solutions
- Building SFI-4.1/ SPI-4.2 applications
- Summary

Virtex-4 Solves SSIO Challenges

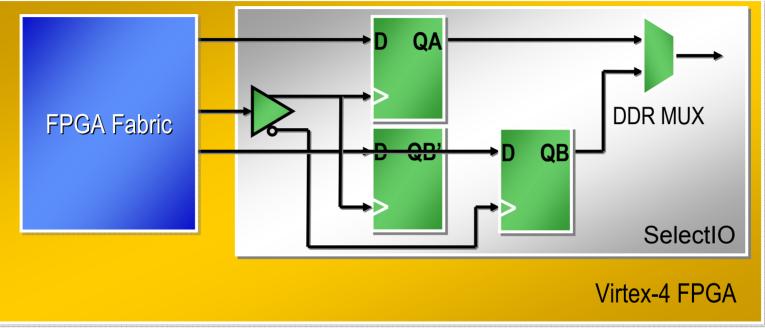
- Ensuring reliable data capture at high speeds
 - ChipSync built into every I/O: Clock-to-data centering at "run time"
- Managing clock speeds up to 700 MHz
 - Multiple differential clock distribution networks
 - Clock forwarding with minimal skew and duty cycle distortion
- Simplifying PCB layout
 - IDELAY and BITSLIP in every I/O as part of ChipSync
 - Data agnostic bus alignment and intrusive bit alignment
- Implementing multiple interfaces
 - Abundant clock resources
 - Flexible I/O and banking rules

Source Synchronous Interfaces Made Easy


How to Get Started

- Access latest Virtex-4 source synchronous design solutions on <u>www.xilinx.com/connectivity</u>
 - IP Cores: SPI-4.2, RapidIO
 - Application Notes: SFI-4, XSBI
 - ML450 Source Synchronous Interfaces Toolkit
 - Board level solution including: reference designs, schematic & gerber files
- Contact your local FAE for an on-site demo

Accelerate Your Design Cycle


Backup

100

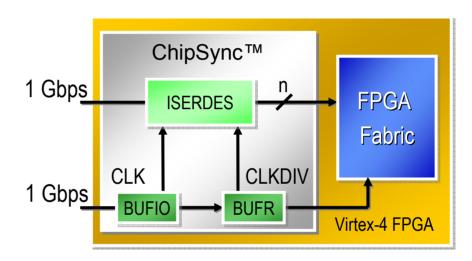
OCH. MICCO

Can Drive DDR Output Data With One Clock

SAME_EDGE

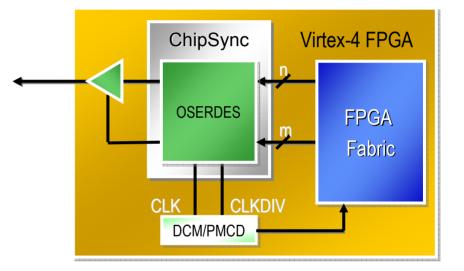
- Simplifies setup and hold requirements
- Higher performance
- Faster time-to-performance

Versatile SelectIO[™]


- Every I/O is Homogeneous
 - Input & output are specified at the same frequency
- Supports 32 I/O standards including:
 - LVCMOS (3.3-V, 2.5-V, 1.8-V, 1.5-V)
 - LVPECL
 - PCI, PCI-X
 - GTL, GTL+
 - HSTL (1.8 V, 1.5 V; Classes I, II, III, IV)
 - Supports differential HSTL
 - SSTL (2.5 V, 1.8 V; Classes I, II)
 - Supports differential SSTL
 - LVDS, Bus LVDS, Extended LVDS
 - HyperTransport[™] (LDT)

Easier and More Flexible I/O Design!

ISERDES Manages Incoming Data


- Frequency division
 - Data width to 10 bits
- Dynamic signal alignment
 - Bit alignment
 - Word alignment
 - Clock alignment
 - Supports Dynamic Phase Alignment (DPA)

OSERDES Simplifies Frequency Multiplication

- Two separate SERDES included
 - Data SERDES: 2, 3, 4, 5,6, 7, 8, 10 bits
 - Three-state SERDES: 1,2, 4 bits
 - Ideal for memories

